In mathematics, the Schauder estimates are a collection of results due to Juliusz Schauder concerning the regularity of solutions to linear, uniformly elliptic partial differential equations. The estimates say that when the equation has appropriately smooth terms and appropriately smooth solutions, then the Hölder norm of the solution can be controlled in terms of the Hölder norms for the coefficient and source terms. Since these estimates assume by hypothesis the existence of a solution, they are called a priori estimates.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Schauder estimates (en)
- Оценки Шаудера (ru)
|
rdfs:comment
| - Оценки Шаудера — оценки на норму Гёльдера решений решений линейных равномерно эллиптических уравнений в частных производных. Получены Юлиушем Шаудером.Эти оценки используются в доказательстве существования и регулярности решений задачи Дирихле для эллиптических уравнений в частных производных. (ru)
- In mathematics, the Schauder estimates are a collection of results due to Juliusz Schauder concerning the regularity of solutions to linear, uniformly elliptic partial differential equations. The estimates say that when the equation has appropriately smooth terms and appropriately smooth solutions, then the Hölder norm of the solution can be controlled in terms of the Hölder norms for the coefficient and source terms. Since these estimates assume by hypothesis the existence of a solution, they are called a priori estimates. (en)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
authorlink
| |
first
| - Neil (en)
- D. (en)
- Juliusz (en)
|
last
| - Gilbarg (en)
- Trudinger (en)
- Schauder (en)
|
year
| |
has abstract
| - In mathematics, the Schauder estimates are a collection of results due to Juliusz Schauder concerning the regularity of solutions to linear, uniformly elliptic partial differential equations. The estimates say that when the equation has appropriately smooth terms and appropriately smooth solutions, then the Hölder norm of the solution can be controlled in terms of the Hölder norms for the coefficient and source terms. Since these estimates assume by hypothesis the existence of a solution, they are called a priori estimates. There is both an interior result, giving a Hölder condition for the solution in interior domains away from the boundary, and a boundary result, giving the Hölder condition for the solution in the entire domain. The former bound depends only on the spatial dimension, the equation, and the distance to the boundary; the latter depends on the smoothness of the boundary as well. The Schauder estimates are a necessary precondition to using the method of continuity to proving the existence and regularity of solutions to the Dirichlet problem for elliptic PDEs. This result says that when the coefficients of the equation and the nature of the boundary conditions are sufficiently smooth, there is a smooth classical solution to the PDE. (en)
- Оценки Шаудера — оценки на норму Гёльдера решений решений линейных равномерно эллиптических уравнений в частных производных. Получены Юлиушем Шаудером.Эти оценки используются в доказательстве существования и регулярности решений задачи Дирихле для эллиптических уравнений в частных производных. (ru)
|
author-link
| |
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |