In probability theory, stochastic drift is the change of the average value of a stochastic (random) process. A related concept is the drift rate, which is the rate at which the average changes. For example, a process that counts the number of heads in a series of fair coin tosses has a drift rate of 1/2 per toss. This is in contrast to the random fluctuations about this average value. The stochastic mean of that coin-toss process is 1/2 and the drift rate of the stochastic mean is 0, assuming 1 = heads and 0 = tails.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Stochastic drift (en)
- 漂移项 (zh)
|
rdfs:comment
| - In probability theory, stochastic drift is the change of the average value of a stochastic (random) process. A related concept is the drift rate, which is the rate at which the average changes. For example, a process that counts the number of heads in a series of fair coin tosses has a drift rate of 1/2 per toss. This is in contrast to the random fluctuations about this average value. The stochastic mean of that coin-toss process is 1/2 and the drift rate of the stochastic mean is 0, assuming 1 = heads and 0 = tails. (en)
- 漂移项(英語:drift term)表示随机过程中,时间序列的正或负趋势。当随机变量是金融资产时,作出正的漂移假设是合适的,因为风险资产应该提供正的收益以补偿投资者所承担的风险,这样漂移类似于期望收益。變量的漂移参数表示每段小时间中,因漂移產生的变化為。若衹考慮漂移,每段小时间导致的期望收益变化就等於。 漂移項可与維納過程结合在一起,即可以考慮一个随机过程為漂移和基本維納过程两项之和。现在随机变量的变化有两个原因。第一个原因是在小的时间间隔,收益的期望值;第二个原因是随机变化,它用基本Wiener过程(即布朗運動)去描述。这样资产价格在小的时间间隔上的变化,可以用下面的随机微分方程描述: (zh)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In probability theory, stochastic drift is the change of the average value of a stochastic (random) process. A related concept is the drift rate, which is the rate at which the average changes. For example, a process that counts the number of heads in a series of fair coin tosses has a drift rate of 1/2 per toss. This is in contrast to the random fluctuations about this average value. The stochastic mean of that coin-toss process is 1/2 and the drift rate of the stochastic mean is 0, assuming 1 = heads and 0 = tails. (en)
- 漂移项(英語:drift term)表示随机过程中,时间序列的正或负趋势。当随机变量是金融资产时,作出正的漂移假设是合适的,因为风险资产应该提供正的收益以补偿投资者所承担的风险,这样漂移类似于期望收益。變量的漂移参数表示每段小时间中,因漂移產生的变化為。若衹考慮漂移,每段小时间导致的期望收益变化就等於。 漂移項可与維納過程结合在一起,即可以考慮一个随机过程為漂移和基本維納过程两项之和。现在随机变量的变化有两个原因。第一个原因是在小的时间间隔,收益的期望值;第二个原因是随机变化,它用基本Wiener过程(即布朗運動)去描述。这样资产价格在小的时间间隔上的变化,可以用下面的随机微分方程描述: (zh)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |