Three-dimension losses and correlation in turbomachinery refers to the measurement of flow-fields in three dimensions, where measuring the loss of smoothness of flow, and resulting inefficiencies, becomes difficult, unlike two-dimensional losses where mathematical complexity is substantially less.

AttributesValues
rdfs:label
  • Three-dimensional losses and correlation in turbomachinery (en)
rdfs:comment
  • Three-dimension losses and correlation in turbomachinery refers to the measurement of flow-fields in three dimensions, where measuring the loss of smoothness of flow, and resulting inefficiencies, becomes difficult, unlike two-dimensional losses where mathematical complexity is substantially less. (en)
foaf:homepage
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Effect_of_three_dimensional_profile_losses_on_efficiency_of_turbomachinery.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Endwall_losses_in_turbomachinery_(cropped).png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Secondary_flow_losses.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Three_dimensional_shock_losses.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Three-dimension losses and correlation in turbomachinery refers to the measurement of flow-fields in three dimensions, where measuring the loss of smoothness of flow, and resulting inefficiencies, becomes difficult, unlike two-dimensional losses where mathematical complexity is substantially less. Three-dimensionality takes into account large pressure gradients in every direction, design/curvature of blades, shock waves, heat transfer, cavitation, and , which generate secondary flow, vortices, tip leakage vortices, and other effects that interrupt smooth flow and cause loss of efficiency. Viscous effects in turbomachinery block flow by the formation of viscous layers around blade profiles, which affects pressure rise and fall and reduces the effective area of a flow field. Interaction between these effects increases rotor instability and decreases the efficiency of turbomachinery. In calculating three-dimensional losses, every element affecting a flow path is taken into account—such as axial spacing between vane and blade rows, end-wall curvature, radial distribution of pressure gradient, hup/tip ratio, dihedral, lean, tip clearance, flare, aspect ratio, skew, sweep, platform cooling holes, surface roughness, and off-take bleeds. Associated with blade profiles are parameters such as camber distribution, stagger angle, blade spacing, blade camber, chord, surface roughness, leading- and trailing-edge radii, and maximum thickness. Two-dimensional losses are easily evaluated using Navier-Stokes equations, but three-dimensional losses are difficult to evaluate; so, correlation is used, which is difficult with so many parameters. So, correlation based on geometric similarity has been developed in many industries, in the form of charts, graphs, data statistics, and performance data. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software