About: Unisolvent functions     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/3XtDqKfa6d

In mathematics, a set of n functions f1, f2, ..., fn is unisolvent (meaning "uniquely solvable") on a domain Ω if the vectors are linearly independent for any choice of n distinct points x1, x2 ... xn in Ω. Equivalently, the collection is unisolvent if the matrix F with entries fi(xj) has nonzero determinant: det(F) ≠ 0 for any choice of distinct xj's in Ω. Unisolvency is a property of vector spaces, not just particular sets of functions. That is, a vector space of functions of dimension n is unisolvent if given any basis (equivalently, a linearly independent set of n functions), the basis is unisolvent (as a set of functions). This is because any two bases are related by an invertible matrix (the change of basis matrix), so one basis is unisolvent if and only if any other basis is unisolv

AttributesValues
rdfs:label
  • Unisolvent functions (en)
rdfs:comment
  • In mathematics, a set of n functions f1, f2, ..., fn is unisolvent (meaning "uniquely solvable") on a domain Ω if the vectors are linearly independent for any choice of n distinct points x1, x2 ... xn in Ω. Equivalently, the collection is unisolvent if the matrix F with entries fi(xj) has nonzero determinant: det(F) ≠ 0 for any choice of distinct xj's in Ω. Unisolvency is a property of vector spaces, not just particular sets of functions. That is, a vector space of functions of dimension n is unisolvent if given any basis (equivalently, a linearly independent set of n functions), the basis is unisolvent (as a set of functions). This is because any two bases are related by an invertible matrix (the change of basis matrix), so one basis is unisolvent if and only if any other basis is unisolv (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, a set of n functions f1, f2, ..., fn is unisolvent (meaning "uniquely solvable") on a domain Ω if the vectors are linearly independent for any choice of n distinct points x1, x2 ... xn in Ω. Equivalently, the collection is unisolvent if the matrix F with entries fi(xj) has nonzero determinant: det(F) ≠ 0 for any choice of distinct xj's in Ω. Unisolvency is a property of vector spaces, not just particular sets of functions. That is, a vector space of functions of dimension n is unisolvent if given any basis (equivalently, a linearly independent set of n functions), the basis is unisolvent (as a set of functions). This is because any two bases are related by an invertible matrix (the change of basis matrix), so one basis is unisolvent if and only if any other basis is unisolvent. Unisolvent systems of functions are widely used in interpolation since they guarantee a unique solution to the interpolation problem. The set of polynomials of degree at most (which form a vector space of dimension ) are unisolvent by the unisolvence theorem. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 65 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software