In mathematics, a function is said to vanish at infinity if its values approach 0 as the input grows without bounds. There are two different ways to define this with one definition applying to functions defined on normed vector spaces and the other applying to functions defined on locally compact spaces. Aside from this difference, both of these notions correspond to the intuitive notion of adding a point at infinity, and requiring the values of the function to get arbitrarily close to zero as one approaches it. This definition can be formalized in many cases by adding an (actual) point at infinity.
Attributes | Values |
---|
rdfs:label
| - C0-Funktion (de)
- Vanish at infinity (en)
- 在無窮遠處消失 (zh)
|
rdfs:comment
| - In der Mathematik ist eine -Funktion eine stetige Funktion, die anschaulich betrachtet im Unendlichen verschwindet. Die Menge aller -Funktionen bildet einen normierten Raum. (de)
- In mathematics, a function is said to vanish at infinity if its values approach 0 as the input grows without bounds. There are two different ways to define this with one definition applying to functions defined on normed vector spaces and the other applying to functions defined on locally compact spaces. Aside from this difference, both of these notions correspond to the intuitive notion of adding a point at infinity, and requiring the values of the function to get arbitrarily close to zero as one approaches it. This definition can be formalized in many cases by adding an (actual) point at infinity. (en)
- 在數學中,若一個賦範向量空間上的函數滿足 當 時, 則稱該函數在無窮遠處消失。 例如,下面這個定義在實數線上的函數 在無窮遠處消失。 另一個例子是 其中 與 為實數,且對應到 上的 這一個點。 (zh)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In der Mathematik ist eine -Funktion eine stetige Funktion, die anschaulich betrachtet im Unendlichen verschwindet. Die Menge aller -Funktionen bildet einen normierten Raum. (de)
- In mathematics, a function is said to vanish at infinity if its values approach 0 as the input grows without bounds. There are two different ways to define this with one definition applying to functions defined on normed vector spaces and the other applying to functions defined on locally compact spaces. Aside from this difference, both of these notions correspond to the intuitive notion of adding a point at infinity, and requiring the values of the function to get arbitrarily close to zero as one approaches it. This definition can be formalized in many cases by adding an (actual) point at infinity. (en)
- 在數學中,若一個賦範向量空間上的函數滿足 當 時, 則稱該函數在無窮遠處消失。 例如,下面這個定義在實數線上的函數 在無窮遠處消失。 另一個例子是 其中 與 為實數,且對應到 上的 這一個點。 (zh)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |