About: Visco-elastic jets     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FVisco-elastic_jets

Visco-elastic jets are the jets of viscoelastic fluids, i.e. fluids that disobey Newton's law of Viscocity. A Viscoelastic fluid that returns to its original shape after the applied stress is released. Everybody has witnessed a situation where a liquid is poured out of an orifice at a given height and speed, and it hits a solid surface. For example, – dropping of honey onto a bread slice, or pouring shower gel onto one's hand. Honey is a purely viscous, Newtonian fluid: the jet thins continuously and coils regularly.

AttributesValues
rdfs:label
  • Visco-elastic jets (en)
rdfs:comment
  • Visco-elastic jets are the jets of viscoelastic fluids, i.e. fluids that disobey Newton's law of Viscocity. A Viscoelastic fluid that returns to its original shape after the applied stress is released. Everybody has witnessed a situation where a liquid is poured out of an orifice at a given height and speed, and it hits a solid surface. For example, – dropping of honey onto a bread slice, or pouring shower gel onto one's hand. Honey is a purely viscous, Newtonian fluid: the jet thins continuously and coils regularly. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath///www2.eng.cam.ac.uk/~jl305/VisJet/collison.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath///www2.eng.cam.ac.uk/~jl305/VisJet/draining.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath///www2.eng.cam.ac.uk/~jl305/VisJet/merging.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath///www2.eng.cam.ac.uk/~jl305/VisJet/oscil.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath///www2.eng.cam.ac.uk/~jl305/VisJet/recoil_mv.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Collision1.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Draining.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Merging.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Oscillation.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Oscillation1.jpg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Visco-elastic jets are the jets of viscoelastic fluids, i.e. fluids that disobey Newton's law of Viscocity. A Viscoelastic fluid that returns to its original shape after the applied stress is released. Everybody has witnessed a situation where a liquid is poured out of an orifice at a given height and speed, and it hits a solid surface. For example, – dropping of honey onto a bread slice, or pouring shower gel onto one's hand. Honey is a purely viscous, Newtonian fluid: the jet thins continuously and coils regularly. Jets of non-Newtonian Viscoelastic fluids show a novel behaviour. A viscoelastic jet breaks up much more slowly than a Newtonian jet. Typically, it evolves into the so-called beads-on-string structure, where large drops are connected by thin threads. The jet widens at its base (reverse swell phenomenon) and folds back and forth on itself. The slow breakup process provides the viscoelastic jet sufficient time to exhibit some new phenomena, including drop migration, drop oscillation, drop merging and drop draining. These properties are a result of the interplay of non-Newtonian properties (viscoelasticity, shear-thinning) with gravitational, viscous, and inertial effects in the jets. Free surface continuous jets of viscoelastic fluids are relevant in many engineering applications involving blood, paints, adhesives or foodstuff and industrial processes like fiber spinning, bottle-filling, oil drilling etc. In many of these processes, an understanding of the instabilities a jet undergoes due to changes in fluid parameters like Reynolds number or Deborah number is essential from process engineering point of view. With the advent of microfluidics, an understanding of the jetting properties of non-Newtonian fluids becomes essential from micro- to macro length scales, and from low to high Reynolds numbers7–9. Like other fluids, When considering viscoelastic flows, the velocity, pressure and stress must satisfy the mass and momentum equation, supplemented with a constitutive equation involving the velocity and stress. The temporal evolution of a viscoelastic fluid thread depends on the relative magnitude of the viscous, inertial, and elastic stresses and the capillary pressure. To study the inertio-elasto-capillary balance for a jet, two dimensionless parameters are defined: the Ohnesorge number (Oℎ) , which is the inverse of the Reynolds number based on a characteristic capillary velocity and, secondly, the intrinsic Deborah number De, , defined as the ratio of the time scale for elastic stress relaxation, λ, to the “Rayleigh time scale” for inertio-capillary breakup of an inviscid jet, . In these expressions, is the fluid density, is the fluid zero shear viscosity, is the surface tension, is the initial radius of the jet, and is the relaxation time associated with the polymer solution. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 47 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software