About: Weinstein conjecture     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Speculation105891783, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/9UPzu4Qinp

In mathematics, the Weinstein conjecture refers to a general existence problem for periodic orbits of Hamiltonian or Reeb vector flows. More specifically, the conjecture claims that on a compact contact manifold, its Reeb vector field should carry at least one periodic orbit.

AttributesValues
rdf:type
rdfs:label
  • Weinstein conjecture (en)
  • Weinstein-Vermutung (de)
  • Champ de Reeb (fr)
rdfs:comment
  • Le champ de Reeb est un champ de vecteurs associé à toute forme de contact. Cette notion se situe à l'intersection de la géométrie de contact et des systèmes dynamiques. Soit une forme de contact sur une variété de dimension 2n+1. Il existe un unique champ de vecteur tel qu'en tout point Ce champ de vecteurs est appelé champ de Reeb de . Son flot préserve et donc la structure de contact et la forme volume qui lui sont associées. (fr)
  • In der Mathematik ist die Weinstein-Vermutung eine offene Frage aus der Theorie dynamischer Systeme. Sie besagt, dass bestimmte Flüsse stets periodische Bahnen haben müssen. Sie stammt von Alan Weinstein. Im Allgemeinen muss der Fluss eines Vektorfeldes nicht notwendigerweise geschlossene Bahnen besitzen. Die Weinstein-Vermutung besagt jedoch, dass jedes Reeb-Vektorfeld auf einer Kontaktmannigfaltigkeit eine geschlossene Bahn besitzt. Verschiedene Spezialfälle der Weinstein-Vermutung sind bekannt, zum Beispiel für im symplektischen und für die kanonische Kontaktform auf dem . (de)
  • In mathematics, the Weinstein conjecture refers to a general existence problem for periodic orbits of Hamiltonian or Reeb vector flows. More specifically, the conjecture claims that on a compact contact manifold, its Reeb vector field should carry at least one periodic orbit. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In der Mathematik ist die Weinstein-Vermutung eine offene Frage aus der Theorie dynamischer Systeme. Sie besagt, dass bestimmte Flüsse stets periodische Bahnen haben müssen. Sie stammt von Alan Weinstein. Im Allgemeinen muss der Fluss eines Vektorfeldes nicht notwendigerweise geschlossene Bahnen besitzen. Die Weinstein-Vermutung besagt jedoch, dass jedes Reeb-Vektorfeld auf einer Kontaktmannigfaltigkeit eine geschlossene Bahn besitzt. Verschiedene Spezialfälle der Weinstein-Vermutung sind bekannt, zum Beispiel für im symplektischen und für die kanonische Kontaktform auf dem . Für 3-Mannigfaltigkeiten wurde die Weinstein-Vermutung in einer Serie von Arbeiten von Clifford Taubes bewiesen. Der Beweis verwendet . (de)
  • Le champ de Reeb est un champ de vecteurs associé à toute forme de contact. Cette notion se situe à l'intersection de la géométrie de contact et des systèmes dynamiques. Soit une forme de contact sur une variété de dimension 2n+1. Il existe un unique champ de vecteur tel qu'en tout point Ce champ de vecteurs est appelé champ de Reeb de . Son flot préserve et donc la structure de contact et la forme volume qui lui sont associées. (fr)
  • In mathematics, the Weinstein conjecture refers to a general existence problem for periodic orbits of Hamiltonian or Reeb vector flows. More specifically, the conjecture claims that on a compact contact manifold, its Reeb vector field should carry at least one periodic orbit. By definition, a level set of contact type admits a contact form obtained by contracting the Hamiltonian vector field into the symplectic form. In this case, the Hamiltonian flow is a Reeb vector field on that level set. It is a fact that any contact manifold (M,α) can be embedded into a canonical symplectic manifold, called the symplectization of M, such that M is a contact type level set (of a canonically defined Hamiltonian) and the Reeb vector field is a Hamiltonian flow. That is, any contact manifold can be made to satisfy the requirements of the Weinstein conjecture. Since, as is trivial to show, any orbit of a Hamiltonian flow is contained in a level set, the Weinstein conjecture is a statement about contact manifolds. It has been known that any contact form is isotopic to a form that admits a closed Reeb orbit; for example, for any contact manifold there is a compatible open book decomposition, whose binding is a closed Reeb orbit. This is not enough to prove the Weinstein conjecture, though, because the Weinstein conjecture states that every contact form admits a closed Reeb orbit, while an open book determines a closed Reeb orbit for a form which is only isotopic to the given form. The conjecture was formulated in 1978 by Alan Weinstein. In several cases, the existence of a periodic orbit was known. For instance, Rabinowitz showed that on star-shaped level sets of a Hamiltonian function on a symplectic manifold, there were always periodic orbits (Weinstein independently proved the special case of convex level sets). Weinstein observed that the hypotheses of several such existence theorems could be subsumed in the condition that the level set be of contact type. (Weinstein's original conjecture included the condition that the first de Rham cohomology group of the level set is trivial; this hypothesis turned out to be unnecessary). The Weinstein conjecture was first proved for contact hypersurfaces in in 1986 by , then extended to cotangent bundles by Hofer–Viterbo and to wider classes of aspherical manifolds by Floer–Hofer–Viterbo. The presence of holomorphic spheres was used by Hofer–Viterbo. All these cases dealt with the situation where the contact manifold is a contact submanifold of a symplectic manifold. A new approach without this assumption was discovered in dimension 3 by Hofer and is at the origin of contact homology. The Weinstein conjecture has now been proven for all closed 3-dimensional manifolds by Clifford Taubes. The proof uses a variant of Seiberg–Witten Floer homology and pursues a strategy analogous to Taubes' proof that the Seiberg-Witten and Gromov invariants are equivalent on a symplectic four-manifold. In particular, the proof provides a shortcut to the closely related program of proving the Weinstein conjecture by showing that the embedded contact homology of any contact three-manifold is nontrivial. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software