A wheel is a type of algebra (in the sense of universal algebra) where division is always defined. In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring. The term wheel is inspired by the topological picture of the projective line together with an extra point ⊥ (bottom element) such as . A wheel can be regarded as the equivalent of a commutative ring (and semiring) where addition and multiplication are not a group but respectively a commutative monoid and a commutative monoid with involution.
Attributes | Values |
---|
rdfs:label
| - Teori roda (in)
- 輪 (数学) (ja)
- Wheel theory (en)
- Колесо (алгебра) (ru)
|
rdfs:comment
| - Sebuah roda merupakan tipe aljabar, dalam arti aljabar universal, dimana pembagian selalu terdefinisi. Khususnya, menjadi berarti. Bilangan real dapat dijabarkan menjadi sebuah roda, seperti halnya gelanggang komutatif. Istilah roda terinspirasi oleh gambar topologis dari bersama dengan titik tambahan . (in)
- 数学における輪(りん、英: wheel)は、環に似た代数系で、除法が常に可能となる(特に零除算が意味を持つ)ようなものである。輪における除法は、通常の二項演算として理解することは諦めて、代わりに反転演算 •−1 と似た(しかし必ずしも一致しない)単項演算 /• を施した元を掛ける操作として考えることになる。通常の如く a/b は a ⋅ /b = /b ⋅ a の略記であるものと理解するが、通常の算術における規則を
* 一般には 0x ≠ 0 である;
* 一般には x − x ≠ 0 である;
* 一般には x/x ≠ 1 である と言った形で緩める。この意味において /x は x の乗法逆元 x−1 とは一般には異なる。 (ja)
- A wheel is a type of algebra (in the sense of universal algebra) where division is always defined. In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring. The term wheel is inspired by the topological picture of the projective line together with an extra point ⊥ (bottom element) such as . A wheel can be regarded as the equivalent of a commutative ring (and semiring) where addition and multiplication are not a group but respectively a commutative monoid and a commutative monoid with involution. (en)
- Колесо (от англ. Wheel theory — «теория колес», иногда «ролик») — тип алгебры, где операция деления определена всегда. В частности, в них деление на ноль имеет смысл. Вещественные числа могут быть расширены до колеса, как и любое коммутативное кольцо. Сфера Римана также может быть расширена до колеса путем присоединения элемента , где . Сфера Римана является расширением комплексной плоскости элементом , где для любых комплексных . Однако не определён в сфере Римана, но определяется в её расширении до колеса. (ru)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - Sebuah roda merupakan tipe aljabar, dalam arti aljabar universal, dimana pembagian selalu terdefinisi. Khususnya, menjadi berarti. Bilangan real dapat dijabarkan menjadi sebuah roda, seperti halnya gelanggang komutatif. Istilah roda terinspirasi oleh gambar topologis dari bersama dengan titik tambahan . (in)
- 数学における輪(りん、英: wheel)は、環に似た代数系で、除法が常に可能となる(特に零除算が意味を持つ)ようなものである。輪における除法は、通常の二項演算として理解することは諦めて、代わりに反転演算 •−1 と似た(しかし必ずしも一致しない)単項演算 /• を施した元を掛ける操作として考えることになる。通常の如く a/b は a ⋅ /b = /b ⋅ a の略記であるものと理解するが、通常の算術における規則を
* 一般には 0x ≠ 0 である;
* 一般には x − x ≠ 0 である;
* 一般には x/x ≠ 1 である と言った形で緩める。この意味において /x は x の乗法逆元 x−1 とは一般には異なる。 (ja)
- A wheel is a type of algebra (in the sense of universal algebra) where division is always defined. In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring. The term wheel is inspired by the topological picture of the projective line together with an extra point ⊥ (bottom element) such as . A wheel can be regarded as the equivalent of a commutative ring (and semiring) where addition and multiplication are not a group but respectively a commutative monoid and a commutative monoid with involution. (en)
- Колесо (от англ. Wheel theory — «теория колес», иногда «ролик») — тип алгебры, где операция деления определена всегда. В частности, в них деление на ноль имеет смысл. Вещественные числа могут быть расширены до колеса, как и любое коммутативное кольцо. Сфера Римана также может быть расширена до колеса путем присоединения элемента , где . Сфера Римана является расширением комплексной плоскости элементом , где для любых комплексных . Однако не определён в сфере Римана, но определяется в её расширении до колеса. Термин колесо вдохновлен топологической пиктограммой , обозначающей проективную линию вместе с дополнительной точкой . (ru)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |