About: Wheeler Jump     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2jKrii1cxz

The Wheeler Jump is a type of subroutine call methodology that was used on some early computers that lacked hardware support for saving the return address. The concept was developed by David Wheeler while working on the pioneering EDSAC machine in the 1950s. EDSAC had not been built with subroutines in mind, and lacked a suitable processor register or a hardware stack that might allow the return address to be easily stored.

AttributesValues
rdfs:label
  • Wheeler Jump (en)
rdfs:comment
  • The Wheeler Jump is a type of subroutine call methodology that was used on some early computers that lacked hardware support for saving the return address. The concept was developed by David Wheeler while working on the pioneering EDSAC machine in the 1950s. EDSAC had not been built with subroutines in mind, and lacked a suitable processor register or a hardware stack that might allow the return address to be easily stored. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The Wheeler Jump is a type of subroutine call methodology that was used on some early computers that lacked hardware support for saving the return address. The concept was developed by David Wheeler while working on the pioneering EDSAC machine in the 1950s. EDSAC had not been built with subroutines in mind, and lacked a suitable processor register or a hardware stack that might allow the return address to be easily stored. Wheeler's solution was a particular way to write the subroutine code. To implement it, the last line of the subroutine was a "jump to this address" instruction, which would normally be followed by a memory location. In a Wheeler subroutine, this address was normally set to a dummy number, say 0. To call the routine, the address of the caller would be placed in the accumulator and then the code would jump to the starting point of the routine. The first instructions in the routine would calculate the return address based on the value in the accumulator, typically the next memory location so an increment will suffice, and then write the result to the dummy address previously set aside. When the routine runs its course it naturally reaches the end of the routine which now says "jump to the return address". As writing to memory is a slow process compared to register access, this methodology is not particularly fast. The addition of new registers for this sort of duty was a key design goal of EDSAC 2. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 50 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software