OpenLink Software

About: Thermally isolated system     Permalink

an Entity references as follows:

In thermodynamics, a thermally isolated system can exchange no mass or heat energy with its environment. The internal energy of a thermally isolated system may therefore change due to the exchange of work energy. The entropy of a thermally isolated system will increase in time if it is not at equilibrium, but as long as it is at equilibrium, its entropy will be at a maximum and constant value and will not change, no matter how much work energy the system exchanges with its environment. To maintain this constant entropy, any exchange of work energy with the environment must therefore be quasistatic in nature, in order to assure that the system remains essentially at equilibrium during the process.

QRcode icon
QRcode image
Graph IRICount
http://dbpedia.org33 triples
Faceted Search & Find service v1.17_git139

Alternative Linked Data Documents: ODE     Raw Data in: CXML | CSV | RDF ( N-Triples N3/Turtle JSON XML ) | OData ( Atom JSON ) | Microdata ( JSON HTML) | JSON-LD    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] This material is Open Knowledge Creative Commons License Valid XHTML + RDFa
This work is licensed under a Creative Commons Attribution-Share Alike 3.0 Unported License.
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 60 GB memory in use)
Copyright © 2009-2024 OpenLink Software