This HTML5 document contains 32 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n7https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Computable_isomorphism
rdfs:label
Computable isomorphism Rekursive Isomorphie
rdfs:comment
In computability theory two sets of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function with . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility. Two numberings and are called computably isomorphic if there exists a computable bijection so that Computably isomorphic numberings induce the same notion of computability on a set. Rekursive Isomorphie ist in der Berechenbarkeitstheorie eine Äquivalenzrelation auf Mengen natürlicher Zahlen.
dct:subject
dbc:Reduction_(complexity)
dbo:wikiPageID
2611685
dbo:wikiPageRevisionID
1028777541
dbo:wikiPageWikiLink
dbr:Many-one_reduction dbr:Numbering_(computability_theory) dbr:Natural_number dbr:Myhill_isomorphism_theorem dbc:Reduction_(complexity) dbr:Total_function dbr:Computable_function dbr:Bijective dbr:Computability_theory_(computer_science)
owl:sameAs
n7:4hjAH freebase:m.07rn8b wikidata:Q5157265 dbpedia-de:Rekursive_Isomorphie
dbp:wikiPageUsesTemplate
dbt:Mathlogic-stub dbt:Comp-sci-theory-stub dbt:Citation dbt:Explain dbt:Reflist
dbp:date
June 2021
dbp:reason
f is a function on naturals, not on sets of naturals, so what is f?
dbo:abstract
In computability theory two sets of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function with . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility. Two numberings and are called computably isomorphic if there exists a computable bijection so that Computably isomorphic numberings induce the same notion of computability on a set. Rekursive Isomorphie ist in der Berechenbarkeitstheorie eine Äquivalenzrelation auf Mengen natürlicher Zahlen.
prov:wasDerivedFrom
wikipedia-en:Computable_isomorphism?oldid=1028777541&ns=0
dbo:wikiPageLength
1449
foaf:isPrimaryTopicOf
wikipedia-en:Computable_isomorphism