This HTML5 document contains 37 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbpedia-svhttp://sv.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Congruence_ideal
rdf:type
dbo:Work
rdfs:label
Kongruensideal Congruence ideal
rdfs:comment
In algebra, the congruence ideal of a surjective ring homomorphism f : B → C of commutative rings is the image under f of the annihilator of the kernel of f. It is called a congruence ideal because when B is a Hecke algebra and f is a homomorphism corresponding to a modular form, the congruence ideal describes congruences between the modular form of f and other modular forms. Inom matematiken är kongruensidealet av en surjektiv f : B → C av kommutativa ringar bilden under f av av nollrummet of f.
dct:subject
dbc:Modular_forms dbc:Commutative_algebra
dbo:wikiPageID
38301499
dbo:wikiPageRevisionID
1100378054
dbo:wikiPageWikiLink
dbr:Modular_form dbr:Image_(mathematics) dbr:Ring_homomorphism dbc:Modular_forms dbr:Surjective_function dbr:Commutative_ring dbr:Hecke_operator dbr:Eisenstein_series dbr:Hecke_algebra dbc:Commutative_algebra dbr:Kernel_(algebra) dbr:Modular_discriminant dbr:Algebra dbr:Ramanujan_tau_function dbr:Annihilator_(ring_theory)
owl:sameAs
n9:4iPyM wikidata:Q5160995 yago-res:Congruence_ideal dbpedia-sv:Kongruensideal freebase:m.0q3yzw_
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Citation
dbo:abstract
In algebra, the congruence ideal of a surjective ring homomorphism f : B → C of commutative rings is the image under f of the annihilator of the kernel of f. It is called a congruence ideal because when B is a Hecke algebra and f is a homomorphism corresponding to a modular form, the congruence ideal describes congruences between the modular form of f and other modular forms. Inom matematiken är kongruensidealet av en surjektiv f : B → C av kommutativa ringar bilden under f av av nollrummet of f.
gold:hypernym
dbr:Image
prov:wasDerivedFrom
wikipedia-en:Congruence_ideal?oldid=1100378054&ns=0
dbo:wikiPageLength
2656
foaf:isPrimaryTopicOf
wikipedia-en:Congruence_ideal