This HTML5 document contains 43 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n21https://books.google.com/
n20https://global.dbpedia.org/id/
n16http://www.math.osu.edu/~cogdell/
yagohttp://dbpedia.org/class/yago/
n8http://www.numdam.org/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n18http://mathunion.org/ICM/ICM2002.2/

Statements

Subject Item
dbr:Converse_theorem
rdf:type
yago:Relation100031921 yago:Form106290637 yago:LanguageUnit106284225 yago:Part113809207 yago:Abstraction100002137 yago:WikicatAutomorphicForms yago:Word106286395
rdfs:label
Converse theorem
rdfs:comment
In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well behaved.
dct:subject
dbc:Automorphic_forms
dbo:wikiPageID
29554685
dbo:wikiPageRevisionID
1117808290
dbo:wikiPageWikiLink
dbr:Dirichlet_character dbr:Mellin_transform dbc:Automorphic_forms dbr:Dirichlet_series dbr:American_Mathematical_Society dbr:Mathematische_Zeitschrift dbr:Piatetski-Shapiro dbr:Modular_form dbr:Mathematische_Annalen dbr:Publications_Mathématiques_de_l'IHÉS dbr:Automorphic_form dbr:Riemann_zeta_function dbr:Functional_equation dbr:Journal_für_die_reine_und_angewandte_Mathematik
dbo:wikiPageExternalLink
n8:item%3Fid=PMIHES_1994__79__157_0 n16: n18: n21:books%3Fid=EYsKo1FrLfIC
owl:sameAs
wikidata:Q5166461 yago-res:Converse_theorem freebase:m.0drwyl0 n20:4iP3A
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Harvs dbt:Harvtxt dbt:For dbt:Citation
dbo:abstract
In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well behaved.
prov:wasDerivedFrom
wikipedia-en:Converse_theorem?oldid=1117808290&ns=0
dbo:wikiPageLength
4478
foaf:isPrimaryTopicOf
wikipedia-en:Converse_theorem