This HTML5 document contains 46 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n8https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Dold_manifold
rdf:type
yago:PhysicalEntity100001930 yago:Conduit103089014 yago:Artifact100021939 yago:YagoGeoEntity yago:Whole100003553 yago:Way104564698 yago:Pipe103944672 yago:Passage103895293 yago:Object100002684 yago:Tube104493505 yago:Manifold103717750 yago:WikicatManifolds dbo:Album yago:YagoPermanentlyLocatedEntity
rdfs:label
Dold manifold
rdfs:comment
In mathematics, a Dold manifold is one of the manifolds , where is the involution that acts as −1 on the m-sphere and as complex conjugation on the complex projective space . These manifolds were constructed by Albrecht Dold, who used them to give explicit generators for René Thom's unoriented cobordism ring. Note that , the real projective space of dimension m, and .
dcterms:subject
dbc:Manifolds dbc:Algebraic_topology
dbo:wikiPageID
31337422
dbo:wikiPageRevisionID
1085848389
dbo:wikiPageWikiLink
dbc:Manifolds dbr:Unoriented_cobordism_ring dbr:René_Thom dbr:Real_projective_space dbc:Algebraic_topology dbr:N-sphere dbr:Complex_conjugation dbr:Mathematische_Zeitschrift dbr:Complex_projective_space
owl:sameAs
yago-res:Dold_manifold n8:4iUyR wikidata:Q5288906 freebase:m.0gjdt0g
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Citation dbt:Harvs dbt:No_footnotes
dbp:first
Albrecht
dbp:last
Dold
dbp:year
1956
dbo:abstract
In mathematics, a Dold manifold is one of the manifolds , where is the involution that acts as −1 on the m-sphere and as complex conjugation on the complex projective space . These manifolds were constructed by Albrecht Dold, who used them to give explicit generators for René Thom's unoriented cobordism ring. Note that , the real projective space of dimension m, and .
dbp:authorLink
Albrecht Dold
gold:hypernym
dbr:P
prov:wasDerivedFrom
wikipedia-en:Dold_manifold?oldid=1085848389&ns=0
dbo:wikiPageLength
1538
foaf:isPrimaryTopicOf
wikipedia-en:Dold_manifold