This HTML5 document contains 64 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-eshttp://es.dbpedia.org/resource/
n17https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
dbpedia-nlhttp://nl.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Herbrand–Ribet_theorem
rdf:type
yago:Statement106722453 yago:Communication100033020 yago:WikicatTheoremsInNumberTheory yago:Theorem106752293 yago:Proposition106750804 yago:Message106598915 yago:Abstraction100002137 yago:WikicatMathematicalTheorems
rdfs:label
Stelling van Herbrand-Ribet Teorema de Herbrand-Ribet Théorème de Herbrand-Ribet Herbrand–Ribet theorem
rdfs:comment
En matemáticas, el Teorema de Herbrand–Ribet es un resultado del número de clase de ciertos campos de números. Es un refuerzo del en el sentido que el número primo p divide el del campo ciclotómico de la p-iésimas raíces de la unidad si y solo si p divide al numerador del n-ésimo número de Bernoulli Bn para algún n, 0 < n < p − 1. El teorema de Herbrand–Ribet especifica en particular, cuando es que p divide a Bn. Podemos dividir la parte p del grupo de clase ideal G de por medio de sus idempotentes; si G es el grupo de clase ideal, entonces Gn = εn(G). Le théorème de Herbrand-Ribet renforce le théorème de Kummer selon lequel le nombre premier p divise le nombre de classes du corps cyclotomique des racines p-ièmes de l'unité si et seulement si p divise le numérateur du n-ième nombre de Bernoulli Bn pour un certain entier n strictement compris entre 0 et p-1. Le théorème de Herbrand-Ribet précise ce que veut dire, en particulier, l'éventuelle divisibilité par p de Bn. . Nous pouvons maintenant séparer la p-composante du groupe G des classes d'idéaux de ℚ(ζ) par identification des idempotents ; si G est le groupe des classes d'idéaux, alors . In mathematics, the Herbrand–Ribet theorem is a result on the class group of certain number fields. It is a strengthening of Ernst Kummer's theorem to the effect that the prime p divides the class number of the cyclotomic field of p-th roots of unity if and only if p divides the numerator of the n-th Bernoulli number Bn for some n, 0 < n < p − 1. The Herbrand–Ribet theorem specifies what, in particular, it means when p divides such an Bn. In de algebraïsche getaltheorie, een deelgebied van de wiskunde, is de stelling van Herbrand-Ribet een resultaat voor het klassegetal van bepaalde getallenlichamen. Het is een versterking van de stelling van Ernst Kummer in de zin dat het priemgetal het klassegetal van het cyclotomisch veld van de -e eenheidswortel dan en slechts dan deelt, als de teller van het -e Bernoulli-getal deelt voor enige . De stelling van Herbrand-Ribet geeft in het bijzonder aan wat het betekent als een deler is van zo'n .
dct:subject
dbc:Theorems_in_algebraic_number_theory dbc:Cyclotomic_fields
dbo:wikiPageID
1078637
dbo:wikiPageRevisionID
1056523727
dbo:wikiPageWikiLink
dbr:Number_field dbr:Modular_forms dbr:Kenneth_Ribet dbr:Bernoulli_number dbr:Ideal_class_group dbr:Jacques_Herbrand dbr:Ernst_Kummer dbr:P-adic_integer dbr:Roots_of_unity dbc:Cyclotomic_fields dbr:Fermat's_little_theorem dbr:Andrew_Wiles dbr:Class_group dbr:Idempotent_element_(ring_theory) dbc:Theorems_in_algebraic_number_theory dbr:Class_field_theory dbr:If_and_only_if dbr:Kronecker_delta dbr:Iwasawa_theory dbr:Main_conjecture_of_Iwasawa_theory dbr:Vandiver's_conjecture dbr:Barry_Mazur dbr:Cyclotomic_field dbr:Dirichlet_character dbr:Group_ring dbr:Mathematics dbr:Euler_systems dbr:Galois_group
owl:sameAs
dbpedia-es:Teorema_de_Herbrand-Ribet dbpedia-nl:Stelling_van_Herbrand-Ribet wikidata:Q384142 n17:3ZTSS freebase:m.04432t dbpedia-fr:Théorème_de_Herbrand-Ribet
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Short_description
dbo:abstract
In mathematics, the Herbrand–Ribet theorem is a result on the class group of certain number fields. It is a strengthening of Ernst Kummer's theorem to the effect that the prime p divides the class number of the cyclotomic field of p-th roots of unity if and only if p divides the numerator of the n-th Bernoulli number Bn for some n, 0 < n < p − 1. The Herbrand–Ribet theorem specifies what, in particular, it means when p divides such an Bn. In de algebraïsche getaltheorie, een deelgebied van de wiskunde, is de stelling van Herbrand-Ribet een resultaat voor het klassegetal van bepaalde getallenlichamen. Het is een versterking van de stelling van Ernst Kummer in de zin dat het priemgetal het klassegetal van het cyclotomisch veld van de -e eenheidswortel dan en slechts dan deelt, als de teller van het -e Bernoulli-getal deelt voor enige . De stelling van Herbrand-Ribet geeft in het bijzonder aan wat het betekent als een deler is van zo'n . De galoisgroep van het cyclotomisch lichaam van de -e eenheidswortels voor een oneven priemgetal met bestaat uit de groepselementen , waar . Als een gevolg van de kleine stelling van Fermat zijn er in de ring van -adische gehele getallen eenheidswortels, die elk modulo congruent zijn aan een van de getallen 1 tot en met . Wij kunnen daarom een Dirichlet-karakter definiëren; (het Teichmüller-karakter) met waarden in door te eisen dat voor relatief priem met , modulo congruent is met . Het -e deel van de klassegroep is een -module (aangezien het -primair is), dus een module over de . We definiëren voor elke idempotente elementen van de groepsring, als Het is relatief eenvoudig in te zien dat en , waarin de Kronecker-delta is. Dit stelt ons in staat de gedeelten van de ideale klassegroep van op te breken door gebruik te maken van idempotente elementen; als de ideale klasgroep is en :, hebben wij De stelling van Herbrand-Ribet stelt dat dan en slechts dan niet-triviaal is als deler is van het Bernoulli-getal Het deel dat zegt dat deelt op als niet triviaal is, is te danken aan Jacques Herbrand. Het omgekeerde, dat als deler is van , dat dan niet-triviaal is, is te danken aan Kenneth Ribet, en is aanzienlijk moeilijker. Vanwege de klasseveldtheorie kan dit alleen maar waar zijn, als er een onvertakte uitbreiding van het veld van -e eenheidswortels bestaat door een cyclisch uitbreiding van de graad , dat zich op de aangegeven wijze gedraagt onder de actie van Σ. Ribet bewijst dit door daadwerkelijk een dergelijke uitbreiding te construeren met behulp van methoden uit de theorie van de modulaire vormen. Een meer elementair bewijs van Ribets omkering van de stelling van Herbrand, een gevolg van de theorie van de , kan worden gevonden in het boek van Washington Ribets methoden werden verder ontwikkeld door Barry Mazur en Andrew Wiles, dit met het oog op het bewijs van het hoofdvermoeden van de Iwasawa-theorie, waarvan een corollarium een versterking van de stelling van Herbrand-Ribet betekent: de macht van de die deelt is precies gelijk aan de macht van die de orde van deelt. Le théorème de Herbrand-Ribet renforce le théorème de Kummer selon lequel le nombre premier p divise le nombre de classes du corps cyclotomique des racines p-ièmes de l'unité si et seulement si p divise le numérateur du n-ième nombre de Bernoulli Bn pour un certain entier n strictement compris entre 0 et p-1. Le théorème de Herbrand-Ribet précise ce que veut dire, en particulier, l'éventuelle divisibilité par p de Bn. Le groupe de Galois du corps cyclotomique des racines p-ièmes de l'unité pour un nombre premier impair p, ℚ(ζ) avec , est constitué des éléments , où est défini par le fait que . Comme conséquence du petit théorème de Fermat, dans l'anneau des entiers p-adiques ℤp, nous avons racines de l'unité, chacune d'elles est congrue mod p à un certain nombre dans l'intervalle 1 à p - 1 ; nous pouvons par conséquent définir un caractère de Dirichlet (le caractère de Teichmüller) à valeurs dans ℤp en requérant que pour n premier à p, ω(n) soit congru à n modulo p. Le p-composant du groupe de classes, c'est-à-dire le sous-groupe de ce groupe formé par les éléments dont les ordres sont des puissances de p, est un ℤp-module, et nous pouvons appliquer les éléments de l'anneau ℤp[Σ] vers elle et obtenir les éléments du groupe de classes. Nous pouvons maintenant définir un élément idempotent de l'anneau pour chaque n de 1 à p - 1, comme . Nous pouvons maintenant séparer la p-composante du groupe G des classes d'idéaux de ℚ(ζ) par identification des idempotents ; si G est le groupe des classes d'idéaux, alors . Alors, nous avons le théorème de Herbrand-Ribet : est non trivial si et seulement si p divise le nombre de Bernoulli . La partie exprimant p divise si est non trivial est due à Jacques Herbrand. La réciproque (si divise alors est non trivial) est due à Ken Ribet, et est considérablement plus difficile. Par la théorie des corps de classes, ceci n'est possible que s'il existe une extension non ramifiée du corps des racines -ièmes de l'unité par une extension cyclique de degré qui se comporte de la manière prescrite sous l'action de ; Ribet démontra ceci en 1976, par une construction concrète d'une telle extension. En matemáticas, el Teorema de Herbrand–Ribet es un resultado del número de clase de ciertos campos de números. Es un refuerzo del en el sentido que el número primo p divide el del campo ciclotómico de la p-iésimas raíces de la unidad si y solo si p divide al numerador del n-ésimo número de Bernoulli Bn para algún n, 0 < n < p − 1. El teorema de Herbrand–Ribet especifica en particular, cuando es que p divide a Bn. El grupo de Galois Σ del campo ciclotómico de las p-iésimas raíces de la unidad de un primo p, con , consiste de p − 1 elementos del grupo σa, donde σa está definido por . De acuerdo al pequeño teorema de Fermat, en el anillo de los enteros p-ádicos se tienen p − 1 raíces de la unidad, cada una de las cuales es congruente mod p con algún número en el rango entre 1 y p − 1; por lo tanto se puede definir un carácter de Dirichlet ω (el carácter de Teichmüller) con valores en si se requiere que para n coprimos a p, ω(n) sea congruente con n módulo p. La parte p del grupo de clase es un -módulo, y se pueden aplicar elementos en el a él y obtener elementos del grupo de clase. Definiendo un elemento de idempotencia del anillo de grupo para cada n desde 1 hasta p − 1, como Podemos dividir la parte p del grupo de clase ideal G de por medio de sus idempotentes; si G es el grupo de clase ideal, entonces Gn = εn(G). Entonces se tiene el teorema de Herbrand–Ribet:​ Gn es notrivial si y solo si p divide al número de Bernoulli Bp−n. Las parte que dice que p divide Bp−n si Gn no es trivial es el aporte de . El inverso, que si p divide Bp−n entonces Gn no es trivial se debe a Kenneth Ribet, y es significativamente más difícil. Por la teoría de campos de clase, esto sólo puede ser verdadero si existe una extensión no-ramificada del campo de las p-ésimas raíces de la unidad por una extensión cíclica de grado p que se comporta en la forma especificada bajo la acción de Σ; Ribet demostró esto construyendo esta extensión utilizando métodos de la teoría de las formas modulares. Una demostración más simple del aporte de Ribet al teorema de Herbrand se puede consultar en el libro de Washington.​ Barry Mazur y Andrew Wiles, ampliaron y desarrollaron los métodos de Ribet en sus trabajos por demostrar la Conjetura principal de la Teoría de Iwasawa,​ un corolario de la cual es el refuerzo del teorema de Herbrand-Ribet: la potencia de p que divide Bp−n es exactamente la potencia de p que divide el orden de Gn.
gold:hypernym
dbr:Result
prov:wasDerivedFrom
wikipedia-en:Herbrand–Ribet_theorem?oldid=1056523727&ns=0
dbo:wikiPageLength
5478
foaf:isPrimaryTopicOf
wikipedia-en:Herbrand–Ribet_theorem