This HTML5 document contains 59 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n15https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Ideal_quotient
rdf:type
owl:Thing yago:Cognition100023271 yago:Content105809192 yago:Abstraction100002137 yago:PsychologicalFeature100023100 yago:WikicatIdeals yago:Ideal105923696 yago:Idea105833840
rdfs:label
아이디얼 몫 Ideal quotient イデアル商
rdfs:comment
In abstract algebra, if I and J are ideals of a commutative ring R, their ideal quotient (I : J) is the set Then (I : J) is itself an ideal in R. The ideal quotient is viewed as a quotient because if and only if . The ideal quotient is useful for calculating primary decompositions. It also arises in the description of the set difference in algebraic geometry (see below). (I : J) is sometimes referred to as a colon ideal because of the notation. In the context of fractional ideals, there is a related notion of the inverse of a fractional ideal. 抽象代数学において、I と J が可換環 R のイデアルのとき、それらの イデアル商(英: ideal quotient) I : J とは集合 である。これを (I : J) と書くこともある。すると I : J も R のイデアルである。イデアル商は商と見ることができる、なぜならば であることと であることが同値だからだ。例えば、整数環 Z において (6) : (3) = (2) が成り立つ。イデアル商は準素分解の計算に役立つ。また代数幾何において差集合の記述で現れる(下記参照)。 I : J はその表記により コロンイデアル(colon ideal)と呼ばれることがある。分数イデアルの文脈では、分数イデアルのインバースに関連した概念がある。 가환대수학에서 아이디얼 몫(영어: ideal quotient)은 같은 가환환 속의 두 아이디얼에 대하여 정의되는 이항 연산이다. 이는 아이디얼에 대한, 나눗셈의 일반화이다. 대수기하학에서, 이는 두 부분 대수다양체의 ‘차집합’에 해당한다. (대수기하학에서 아이디얼의 곱셈은 대략 부분 대수다양체의 ‘합집합’에 해당하며, 이는 그 역연산에 ‘가장 가까운’ 연산이다.)
dcterms:subject
dbc:Ideals_(ring_theory)
dbo:wikiPageID
980388
dbo:wikiPageRevisionID
1116149928
dbo:wikiPageWikiLink
dbr:Radical_ideal dbr:Zariski_topology dbr:Abstract_algebra dbr:Quotient_ring dbr:Gröbner_basis dbc:Ideals_(ring_theory) dbr:Elimination_theory dbr:Intersection_(set_theory) dbr:Polynomial_ring dbr:Algebraic_number_theory dbr:Plane_curve dbr:If_and_only_if dbr:Algebraic_geometry dbr:Module_(mathematics) dbr:Multiplicatively_closed_set dbr:Complement_(set_theory) dbr:Closure_(topology) dbr:Bijection dbr:Integral_domain dbr:Algebraically_closed_field dbr:Commutative_ring dbr:Ideal_(ring_theory) dbr:Primary_decomposition dbr:Affine_variety dbr:Graduate_Studies_in_Mathematics dbr:Fractional_ideal dbr:Annihilator_(ring_theory)
owl:sameAs
dbpedia-ko:아이디얼_몫 wikidata:Q17098054 n15:fQcW dbpedia-ja:イデアル商 yago-res:Ideal_quotient freebase:m.03wb17
dbp:wikiPageUsesTemplate
dbt:Distinguish dbt:Reflist dbt:Refimprove
dbo:abstract
抽象代数学において、I と J が可換環 R のイデアルのとき、それらの イデアル商(英: ideal quotient) I : J とは集合 である。これを (I : J) と書くこともある。すると I : J も R のイデアルである。イデアル商は商と見ることができる、なぜならば であることと であることが同値だからだ。例えば、整数環 Z において (6) : (3) = (2) が成り立つ。イデアル商は準素分解の計算に役立つ。また代数幾何において差集合の記述で現れる(下記参照)。 I : J はその表記により コロンイデアル(colon ideal)と呼ばれることがある。分数イデアルの文脈では、分数イデアルのインバースに関連した概念がある。 가환대수학에서 아이디얼 몫(영어: ideal quotient)은 같은 가환환 속의 두 아이디얼에 대하여 정의되는 이항 연산이다. 이는 아이디얼에 대한, 나눗셈의 일반화이다. 대수기하학에서, 이는 두 부분 대수다양체의 ‘차집합’에 해당한다. (대수기하학에서 아이디얼의 곱셈은 대략 부분 대수다양체의 ‘합집합’에 해당하며, 이는 그 역연산에 ‘가장 가까운’ 연산이다.) In abstract algebra, if I and J are ideals of a commutative ring R, their ideal quotient (I : J) is the set Then (I : J) is itself an ideal in R. The ideal quotient is viewed as a quotient because if and only if . The ideal quotient is useful for calculating primary decompositions. It also arises in the description of the set difference in algebraic geometry (see below). (I : J) is sometimes referred to as a colon ideal because of the notation. In the context of fractional ideals, there is a related notion of the inverse of a fractional ideal.
prov:wasDerivedFrom
wikipedia-en:Ideal_quotient?oldid=1116149928&ns=0
dbo:wikiPageLength
6620
foaf:isPrimaryTopicOf
wikipedia-en:Ideal_quotient