This HTML5 document contains 124 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
dbpedia-glhttp://gl.dbpedia.org/resource/
n18http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n9https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n12http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n4http://mathworld.wolfram.com/
owlhttp://www.w3.org/2002/07/owl#
dbpedia-vihttp://vi.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Linear_least_squares
rdf:type
owl:Thing
rdfs:label
Linear least squares
rdfs:comment
Linear least squares (LLS) is the least squares approximation of linear functions to data.It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods.
rdfs:seeAlso
dbr:Ordinary_least_squares dbr:Linear_regression
foaf:depiction
n12:Linear_least_squares_example2.svg n12:Linear_least_squares2.svg
dct:subject
dbc:Broad-concept_articles dbc:Least_squares dbc:Computational_statistics
dbo:wikiPageID
27118759
dbo:wikiPageRevisionID
1119765973
dbo:wikiPageWikiLink
dbr:Mean_squared_error dbr:Normal_distribution dbr:Shrinkage_estimator dbr:Data dbr:Linear_function dbr:Overdetermined_system dbr:Polynomial_regression dbr:Vandermonde_matrix dbr:Partial_least_squares_regression dbr:Linear_functions dbc:Broad-concept_articles dbr:Outline_of_regression_analysis dbr:Goodness_of_fit dbr:Calibration_curve dbr:Orthogonal_polynomials dbr:Least_squares_approximation dbr:Errors_and_residuals_in_statistics dbr:Degrees_of_freedom_(statistics) dbr:Generalized_least_squares dbr:Observational_study dbr:Simple_linear_regression dbr:Errors-in-variables_models dbr:Iteratively_reweighted_least_squares dbr:Efficiency_(statistics) dbr:James–Stein_estimator dbr:Cumulative_distribution_function dbr:Homoscedasticity dbr:Partial_derivative dbr:Standard_addition dbr:Regularization_(mathematics) dbr:Prediction dbr:Dependent_variable dbr:Line_fitting dbr:Column_space dbr:Gran_plot dbr:Total_least_squares dbr:Heteroscedasticity dbr:Iterative_method dbc:Least_squares dbr:Non-linear_least_squares dbr:Stein's_phenomenon dbr:Gauss–Markov_theorem dbr:Data_fitting dbr:Arithmetic_mean dbr:Mathematics dbr:Matrix_decomposition dbr:Tikhonov_regularization dbr:B-spline dbr:Weighted_least_squares dbr:Consistent_estimator n18:Linear_least_squares_example2.svg dbr:Mathematical_optimization dbr:Line-line_intersection dbr:Independent_variable dbr:Instrumental_variables dbr:Chi-squared_distribution dbr:Parameter dbr:Expected_value dbr:Statistical_inference dbr:Beer–Lambert_law dbr:Polynomial dbr:Prior_probability dbr:Multicollinearity dbr:Bias_of_an_estimator dbr:Maximum_likelihood dbr:Linear_regression dbr:Residuals_(statistics) dbr:Dominating_decision_rule dbr:Ordinary_least_squares dbr:Descriptive_statistics dbr:Closed-form_expression dbr:Residual_(statistics) dbr:Minimum_mean_square_error dbr:Numerical_smoothing_and_differentiation dbr:Statistics dbr:Constrained_least_squares dbr:Least_squares dbr:Objective_function dbr:Ill-conditioned dbr:Regularized_least_squares dbr:Chemometrics n18:Linear_least_squares2.svg dbr:Maxima_and_minima dbc:Computational_statistics dbr:Mathematical_model dbr:Convex_function dbr:Numerical_methods_for_linear_least_squares dbr:Nonlinear_least_squares dbr:Regression_analysis dbr:Statistical_model dbr:Experiment
dbo:wikiPageExternalLink
n4:LeastSquaresFittingPolynomial.html n4:LeastSquaresFitting.html
owl:sameAs
n9:4qN4F dbpedia-vi:Bình_phương_tối_thiểu_tuyến_tính dbpedia-gl:Mínimos_cadrados_lineais wikidata:Q6553462
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Least_Squares_and_Regression_Analysis dbt:Cite_book dbt:Citation_needed dbt:Further dbt:Short_description dbt:Pb dbt:Regression_bar dbt:Math dbt:See_also
dbo:thumbnail
n12:Linear_least_squares_example2.svg?width=300
dbo:abstract
Linear least squares (LLS) is the least squares approximation of linear functions to data.It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods.
prov:wasDerivedFrom
wikipedia-en:Linear_least_squares?oldid=1119765973&ns=0
dbo:wikiPageLength
27108
foaf:isPrimaryTopicOf
wikipedia-en:Linear_least_squares