This HTML5 document contains 54 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Static_spacetime
rdf:type
yago:Conduit103089014 yago:YagoPermanentlyLocatedEntity yago:YagoGeoEntity yago:Passage103895293 yago:PhysicalEntity100001930 yago:Manifold103717750 yago:Artifact100021939 yago:Tube104493505 yago:Pipe103944672 yago:WikicatLorentzianManifolds yago:Way104564698 yago:Object100002684 yago:Whole100003553
rdfs:label
Spaziotempo statico Static spacetime
rdfs:comment
In relatività generale, uno spaziotempo statico è uno spaziotempo stazionario per il quale è possibile individuare una famiglia di ipersuperfici spacelike che siano ortogonali alle orbite generate delle isometrie delle metrica (che esistono perché lo spaziotempo è stazionario). La stazionarietà è equivalente alla richiesta che per il vettore di Killing timelike che genera le isometria valga la relazione dove le parentesi quadre indicano l'antisimmetrizzazione sugli indici. In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static. Locally, every static spacetime looks like a standard static spacetime which is a Lorentzian warped product R S with a metric of the form ,
dcterms:subject
dbc:Lorentzian_manifolds
dbo:wikiPageID
1682143
dbo:wikiPageRevisionID
1016066870
dbo:wikiPageWikiLink
dbr:Stationary_spacetime dbr:Hypersurface dbr:Congruence_(general_relativity) dbr:Involution_(mathematics) dbr:Weyl_solution dbr:De_Sitter_space dbr:Reissner–Nordström_metric dbr:Timelike dbr:Lorentzian_manifold dbr:Schwarzschild_solution dbr:Killing_vector_field dbr:Kerr_solution dbr:Foliation dbr:General_relativity dbc:Lorentzian_manifolds dbr:Gravitational_wave dbr:Spacetime dbr:Riemannian_manifold dbr:Hermann_Weyl dbr:Spherically_symmetric_spacetime
owl:sameAs
yago-res:Static_spacetime n9:3fsTN wikidata:Q3966116 freebase:m.05m_v4 dbpedia-it:Spaziotempo_statico
dbp:wikiPageUsesTemplate
dbt:Citation dbt:Relativity-stub dbt:More_footnotes dbt:More_citations_needed
dbo:abstract
In relatività generale, uno spaziotempo statico è uno spaziotempo stazionario per il quale è possibile individuare una famiglia di ipersuperfici spacelike che siano ortogonali alle orbite generate delle isometrie delle metrica (che esistono perché lo spaziotempo è stazionario). La stazionarietà è equivalente alla richiesta che per il vettore di Killing timelike che genera le isometria valga la relazione dove le parentesi quadre indicano l'antisimmetrizzazione sugli indici. In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static. Formally, a spacetime is static if it admits a global, non-vanishing, timelike Killing vector field which is irrotational, i.e., whose orthogonal distribution is involutive. (Note that the leaves of the associated foliation are necessarily space-like hypersurfaces.) Thus, a static spacetime is a stationary spacetime satisfying this additional integrability condition. These spacetimes form one of the simplest classes of Lorentzian manifolds. Locally, every static spacetime looks like a standard static spacetime which is a Lorentzian warped product R S with a metric of the form , where R is the real line, is a (positive definite) metric and is a positive function on the Riemannian manifold S. In such a local coordinate representation the Killing field may be identified with and S, the manifold of -trajectories, may be regarded as the instantaneous 3-space of stationary observers. If is the square of the norm of the Killing vector field, , both and are independent of time (in fact ). It is from the latter fact that a static spacetime obtains its name, as the geometry of the space-like slice S does not change over time.
prov:wasDerivedFrom
wikipedia-en:Static_spacetime?oldid=1016066870&ns=0
dbo:wikiPageLength
3263
foaf:isPrimaryTopicOf
wikipedia-en:Static_spacetime