This HTML5 document contains 60 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n19http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n17https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n18http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Triangular_array
rdf:type
yago:WikicatTrianglesOfNumbers yago:Abstraction100002137 yago:PlaneFigure113863186 yago:Polygon113866144 yago:Triangle113879320 yago:Shape100027807 owl:Thing yago:Figure113862780 yago:Attribute100024264
rdfs:label
Tableau triangulaire Triangular array
rdfs:comment
En mathématiques et en informatique, un tableau triangulaire de nombres, ou de polynômes est une suite doublement indexée dans laquelle chaque ligne est aussi longue que son ordre. Dans de nombreux cas, il s'agit d'une suite définie pour les entiers vérifiant . La ligne de rang n est alors le n + 1-uplet , et la colonne de rang k est la suite . In mathematics and computing, a triangular array of numbers, polynomials, or the like, is a doubly indexed sequence in which each row is only as long as the row's own index. That is, the ith row contains only i elements.
owl:differentFrom
dbr:Triangular_matrix
foaf:depiction
n18:BellNumberAnimated.gif
dct:subject
dbc:Triangles_of_numbers
dbo:wikiPageID
28639331
dbo:wikiPageRevisionID
1122574089
dbo:wikiPageWikiLink
dbr:Definite_integral dbr:Integer_sequence dbr:Fibonacci_number dbr:Hosoya's_triangle dbr:Triangular_number dbr:CYK_algorithm dbr:Lozanić's_triangle dbc:Triangles_of_numbers dbr:Bell_triangle dbr:Context-free_grammar dbr:Euler's_triangle dbr:Algorithm dbr:Bell_polynomials dbr:Partition_of_a_set dbr:Binomial_coefficients dbr:Romberg's_method dbr:Floyd's_triangle dbr:Dynamic_programming n19:BellNumberAnimated.gif dbr:Catalan's_triangle dbr:Singleton_(mathematics) dbr:Boustrophedon_transform dbr:Narayana_triangle dbr:Triangular_matrix dbr:Pascal's_triangle
owl:sameAs
freebase:m.0cz89gg wikidata:Q7840129 yago-res:Triangular_array dbpedia-fr:Tableau_triangulaire n17:4wKCu
dbp:wikiPageUsesTemplate
dbt:Mathworld dbt:Reflist dbt:Distinguish
dbo:thumbnail
n18:BellNumberAnimated.gif?width=300
dbp:title
Number Triangle
dbp:urlname
NumberTriangle
dbp:mode
cs2
dbo:abstract
In mathematics and computing, a triangular array of numbers, polynomials, or the like, is a doubly indexed sequence in which each row is only as long as the row's own index. That is, the ith row contains only i elements. En mathématiques et en informatique, un tableau triangulaire de nombres, ou de polynômes est une suite doublement indexée dans laquelle chaque ligne est aussi longue que son ordre. Dans de nombreux cas, il s'agit d'une suite définie pour les entiers vérifiant . La ligne de rang n est alors le n + 1-uplet , et la colonne de rang k est la suite .
prov:wasDerivedFrom
wikipedia-en:Triangular_array?oldid=1122574089&ns=0
dbo:wikiPageLength
7131
foaf:isPrimaryTopicOf
wikipedia-en:Triangular_array