This HTML5 document contains 26 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Buserite
rdfs:label
Buserite
rdfs:comment
Buserite is a hydrated layered Mn-oxide mineral with nominal chemical formula MnO2.nH2O. It was named after Swiss chemist professor , who first identified it in 1952 in deep-sea manganese nodules. Buser named it 10 Å manganate because the periodicity in the layer stacking direction was 10 Å. It was renamed buserite in 1970 by the nomenclature commission of the International Mineralogical Association (IMA). The relationship between the crystal structure and the properties of hydrated phyllomanganates were studied by Newton and Kwon (2018) using molecular simulations:
dcterms:subject
dbc:Oxide_minerals dbc:Manganese_minerals
dbo:wikiPageID
59681204
dbo:wikiPageRevisionID
1109914108
dbo:wikiPageWikiLink
dbr:Manganate dbr:Angstrom dbr:W._Buser dbr:Oxide_minerals dbr:International_Mineralogical_Association dbc:Manganese_minerals dbr:Manganese_nodule dbc:Oxide_minerals dbr:Swiss_people dbr:Water dbr:Ferromanganese_nodules dbr:Birnessite
owl:sameAs
wikidata:Q60772065 n9:9bk7k
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Oxide-mineral-stub
dbo:abstract
Buserite is a hydrated layered Mn-oxide mineral with nominal chemical formula MnO2.nH2O. It was named after Swiss chemist professor , who first identified it in 1952 in deep-sea manganese nodules. Buser named it 10 Å manganate because the periodicity in the layer stacking direction was 10 Å. It was renamed buserite in 1970 by the nomenclature commission of the International Mineralogical Association (IMA). More recent crystallographic studies have shown that buserite is not a distinct mineral species, but a two-water layer form of the one-water layer phyllomanganate birnessite, which has a characteristic periodicity of 7 Å perpendicularly to the MnO2 layers. When taken out of water, buserite may lose one layer of water and transform into birnessite. Some buserite minerals are resistant to dehydratation to various degrees, however, depending on the structure of the interlayer. Buserite of marine ferromangnanese nodules transforms into birnessite upon heating to 110 °C for several hours. Natural buserite is most often finely grained and poorly-crystallized. The MnO2 layers are generally stacked at random like in vernadite, which is a turbostratic birnessite. For this reason, buserite is also named 10 Å vernadite in the literature. The relationship between the crystal structure and the properties of hydrated phyllomanganates were studied by Newton and Kwon (2018) using molecular simulations: Buserite reacts strongly with trace metals due to the presence of octahedral Mn4+ vacancies in the MnO2 layer. The defective structure of phyllomanganates from the buserite-birnessite family affords them a key geochemical role in many environmental systems that affect soil and water composition via cation exchange and adsorption of trace metals. Slight variations in their structural and chemical composition often result in a dramatic difference in their chemical reactivity. The enrichment in Co2+, Ni2+ and Cu2+ of 10 Å vernadite in manganese nodules is manifold.
prov:wasDerivedFrom
wikipedia-en:Buserite?oldid=1109914108&ns=0
dbo:wikiPageLength
5341
foaf:isPrimaryTopicOf
wikipedia-en:Buserite