This HTML5 document contains 88 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n16https://global.dbpedia.org/id/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
dbpedia-ukhttp://uk.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
n9http://katmat.math.uni-bremen.de/acc/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Complete_category
rdf:type
dbo:TelevisionStation
rdfs:label
Повна категорія 完備圏 Полная категория Complete category Vollständige Kategorie 완비 범주 Catégorie complète
rdfs:comment
数学では、完備圏とは任意の小さな極限が存在する圏である。つまり、すべての図式F : J → C ( Jは小さい)において、Cの極限がある場合、圏Cを完備と呼ぶ。これの双対概念として、 余完備圏とは、任意の小さな余極限が存在する圏である。双完備圏とは、完備と余完備の両方の性質を持った圏である。 Категорія называється повною у малому, якщо у ній будь-яка (мала) має границю. Дуальне поняття — коповна у малому категорія, тобто та, у якій будь-яка мала діаграма має . Аналогічно визначається кінцева повнота і взагалі α-повнота для будь-якого α. З них усіх найбільш використовуваною є повнота у малому, тому категорії, повні у малому, називаються просто повними. Відзначимо, що це не означає існування границь взагалі усіх (не обов'язково малих) діаграм, бо така категорія з необхідністю була б передпорядком. Категорія, яка є одночасно повною і коповною, називається біповною. In mathematics, a complete category is a category in which all small limits exist. That is, a category C is complete if every diagram F : J → C (where J is small) has a limit in C. Dually, a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of all limits (even when J is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a thin category: for any two objects there can be at most one morphism from one object to the other. 범주론에서 완비 범주(完備範疇, 영어: complete category)는 집합 크기의 모든 극한들을 갖는 범주이다. En mathématiques, une catégorie complète est une catégorie dans laquelle toutes les petites limites existent. Autrement dit, une catégorie C est complète si tout diagramme F : J → C (où J est petite) a une limite dans C. Duallement, une catégorie cocomplète est une catégorie dans laquelle toutes les petites colimites existent. Une catégorie bicomplète est une catégorie à la fois complète et cocomplète. Im mathematischen Teilgebiet der Kategorientheorie ist eine vollständige Kategorie eine Kategorie, die alle kleinen Limiten besitzt. Das heißt, dass für jede kleine Kategorie und jeden Funktor in der Kategorie der Limes von in existiert. Dual dazu heißt eine Kategorie kovollständig, falls sie alle kleinen Kolimiten besitzt. Das ist gleichbedeutend damit, dass die duale Kategorie vollständig ist. Existieren alle Limiten (bzw. Kolimiten) für eine feste kleine Kategorie , so sagt man, sei -vollständig (bzw. -kovollständig). Категория называется полной в малом, если в ней любая малая диаграмма имеет предел. Двойственное понятие — кополная в малом категория, то есть та, в которой любая малая диаграмма имеет копредел. Аналогично определяется конечная полнота и вообще α-полнота для любого регулярного кардинала α. Из них всех наиболее употребимой является полнота в малом, поэтому категории, полные в малом, называют просто полными. Существование пределов вообще всех (не обязательно малых) диаграмм оказывается слишком сильным условием, так как такая категория с необходимостью была бы предпорядком, между любыми двумя её объектами было бы не более одного морфизма.
dcterms:subject
dbc:Limits_(category_theory)
dbo:wikiPageID
62781
dbo:wikiPageRevisionID
948255993
dbo:wikiPageWikiLink
dbr:Existence_theorem_for_limits dbr:Product_(category_theory) dbr:Coproduct dbr:Category_of_abelian_groups dbr:Pushout_(category_theory) dbr:Wheel_theory dbr:Category_(mathematics) dbr:Simplicial_set dbr:If_and_only_if dbr:Thin_category dbr:Equaliser_(mathematics) dbr:Colimit dbr:Commutative_ring dbr:Limit_(category_theory) dbr:Terminal_object dbr:Field_(mathematics) dbr:Pre-abelian_category dbr:Trivial_group dbr:Pullback_(category_theory) dbr:Proper_class dbr:Finite_set dbr:Category_of_sets dbr:Mathematics dbr:Posetal_category dbr:Category_of_fields dbr:Finite-dimensional dbc:Limits_(category_theory) dbr:Finite_abelian_group dbr:Complete_lattices dbr:Compact_Hausdorff_space dbr:Partially_ordered_class dbr:Category_of_topological_spaces dbr:Complete_lattice dbr:Category_of_all_small_categories dbr:Abelian_category dbr:Category_of_groups dbr:Category_of_metric_spaces dbr:Small_category dbr:Category_of_rings dbr:Duality_(category_theory) dbr:Category_of_modules dbr:Diagram_(category_theory) dbr:Category_of_vector_spaces dbr:Coequalizer dbr:Poset dbr:Ordinal_number
dbo:wikiPageExternalLink
n9:acc.pdf
owl:sameAs
dbpedia-ko:완비_범주 dbpedia-uk:Повна_категорія freebase:m.03hfss5 dbpedia-de:Vollständige_Kategorie dbpedia-ru:Полная_категория n16:43gCQ wikidata:Q4370335 dbpedia-ja:完備圏 dbpedia-fr:Catégorie_complète
dbp:wikiPageUsesTemplate
dbt:Unreferenced_section dbt:Cite_book dbt:Short_description
dbo:abstract
In mathematics, a complete category is a category in which all small limits exist. That is, a category C is complete if every diagram F : J → C (where J is small) has a limit in C. Dually, a cocomplete category is one in which all small colimits exist. A bicomplete category is a category which is both complete and cocomplete. The existence of all limits (even when J is a proper class) is too strong to be practically relevant. Any category with this property is necessarily a thin category: for any two objects there can be at most one morphism from one object to the other. A weaker form of completeness is that of finite completeness. A category is finitely complete if all finite limits exists (i.e. limits of diagrams indexed by a finite category J). Dually, a category is finitely cocomplete if all finite colimits exist. Категорія называється повною у малому, якщо у ній будь-яка (мала) має границю. Дуальне поняття — коповна у малому категорія, тобто та, у якій будь-яка мала діаграма має . Аналогічно визначається кінцева повнота і взагалі α-повнота для будь-якого α. З них усіх найбільш використовуваною є повнота у малому, тому категорії, повні у малому, називаються просто повними. Відзначимо, що це не означає існування границь взагалі усіх (не обов'язково малих) діаграм, бо така категорія з необхідністю була б передпорядком. Категорія, яка є одночасно повною і коповною, називається біповною. En mathématiques, une catégorie complète est une catégorie dans laquelle toutes les petites limites existent. Autrement dit, une catégorie C est complète si tout diagramme F : J → C (où J est petite) a une limite dans C. Duallement, une catégorie cocomplète est une catégorie dans laquelle toutes les petites colimites existent. Une catégorie bicomplète est une catégorie à la fois complète et cocomplète. L'existence de toutes les limites (même lorsque J est une classe propre) est trop forte pour être pertinente en pratique. Toute catégorie possédant cette propriété est nécessairement une catégorie mince : pour deux objets quelconques, il peut y avoir au plus un morphisme d'un objet à l'autre. Une forme plus faible de complétude est celle de complétude finie. Une catégorie est finiment complète si toutes les limites finies existent (c'est-à-dire les limites des diagrammes indexés par une catégorie J ayant un ensemble fini d'objets). Duallement, une catégorie est finiment cocomplète si toutes les colimites finies existent. 범주론에서 완비 범주(完備範疇, 영어: complete category)는 집합 크기의 모든 극한들을 갖는 범주이다. Im mathematischen Teilgebiet der Kategorientheorie ist eine vollständige Kategorie eine Kategorie, die alle kleinen Limiten besitzt. Das heißt, dass für jede kleine Kategorie und jeden Funktor in der Kategorie der Limes von in existiert. Dual dazu heißt eine Kategorie kovollständig, falls sie alle kleinen Kolimiten besitzt. Das ist gleichbedeutend damit, dass die duale Kategorie vollständig ist. Existieren alle Limiten (bzw. Kolimiten) für eine feste kleine Kategorie , so sagt man, sei -vollständig (bzw. -kovollständig). Ist -vollständig (bzw. -kovollständig) für alle endlichen Kategorien , so nennt man endlich vollständig (bzw. endlich kovollständig). Категория называется полной в малом, если в ней любая малая диаграмма имеет предел. Двойственное понятие — кополная в малом категория, то есть та, в которой любая малая диаграмма имеет копредел. Аналогично определяется конечная полнота и вообще α-полнота для любого регулярного кардинала α. Из них всех наиболее употребимой является полнота в малом, поэтому категории, полные в малом, называют просто полными. Существование пределов вообще всех (не обязательно малых) диаграмм оказывается слишком сильным условием, так как такая категория с необходимостью была бы предпорядком, между любыми двумя её объектами было бы не более одного морфизма. Категория, являющаяся одновременно полной и кополной, называется биполной. Более слабое свойство категории — конечная полнота. Категория называется конечно полной, если в ней существуют все конечные пределы (то есть пределы всех диаграмм, индексированных конечным множеством). Аналогично определяются конечно кополные категории. 数学では、完備圏とは任意の小さな極限が存在する圏である。つまり、すべての図式F : J → C ( Jは小さい)において、Cの極限がある場合、圏Cを完備と呼ぶ。これの双対概念として、 余完備圏とは、任意の小さな余極限が存在する圏である。双完備圏とは、完備と余完備の両方の性質を持った圏である。
gold:hypernym
dbr:Category
prov:wasDerivedFrom
wikipedia-en:Complete_category?oldid=948255993&ns=0
dbo:wikiPageLength
5501
foaf:isPrimaryTopicOf
wikipedia-en:Complete_category