This HTML5 document contains 235 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dahttp://da.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
dbpedia-nohttp://no.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-svhttp://sv.dbpedia.org/resource/
dbpedia-bghttp://bg.dbpedia.org/resource/
dbpedia-fihttp://fi.dbpedia.org/resource/
n57http://www.khanacademy.org/video/
dbrhttp://dbpedia.org/resource/
dbpedia-shhttp://sh.dbpedia.org/resource/
dbpedia-arhttp://ar.dbpedia.org/resource/
dbpedia-mshttp://ms.dbpedia.org/resource/
n31http://ml.dbpedia.org/resource/
dbpedia-frhttp://fr.dbpedia.org/resource/
n15http://commons.wikimedia.org/wiki/Special:FilePath/
dctermshttp://purl.org/dc/terms/
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbpedia-cshttp://cs.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n38http://dbpedia.org/resource/File:
dbphttp://dbpedia.org/property/
dbpedia-euhttp://eu.dbpedia.org/resource/
dbpedia-gahttp://ga.dbpedia.org/resource/
xsdhhttp://www.w3.org/2001/XMLSchema#
dbpedia-ukhttp://uk.dbpedia.org/resource/
dbpedia-idhttp://id.dbpedia.org/resource/
dbohttp://dbpedia.org/ontology/
dbpedia-srhttp://sr.dbpedia.org/resource/
dbpedia-vihttp://vi.dbpedia.org/resource/
dbpedia-huhttp://hu.dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
n35http://uz.dbpedia.org/resource/
dbpedia-dehttp://de.dbpedia.org/resource/
dbpedia-thhttp://th.dbpedia.org/resource/
yagohttp://dbpedia.org/class/yago/
dbpedia-rohttp://ro.dbpedia.org/resource/
dbpedia-ruhttp://ru.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbpedia-nlhttp://nl.dbpedia.org/resource/
n40https://global.dbpedia.org/id/
yago-reshttp://yago-knowledge.org/resource/
dbpedia-slhttp://sl.dbpedia.org/resource/
n47https://archive.org/details/biochemistry00voet_0/page/
dbpedia-ithttp://it.dbpedia.org/resource/
dbpedia-cahttp://ca.dbpedia.org/resource/
provhttp://www.w3.org/ns/prov#
foafhttp://xmlns.com/foaf/0.1/
n36http://bs.dbpedia.org/resource/
dbpedia-simplehttp://simple.dbpedia.org/resource/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbpedia-kohttp://ko.dbpedia.org/resource/
dbpedia-fahttp://fa.dbpedia.org/resource/
dbpedia-trhttp://tr.dbpedia.org/resource/
dbpedia-glhttp://gl.dbpedia.org/resource/
n16https://archive.org/details/
dbpedia-eshttp://es.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
owlhttp://www.w3.org/2002/07/owl#

Statements

Subject Item
dbr:Electron_transport_chain
rdf:type
yago:Unit109465459 yago:PhysicalEntity100001930 yago:Material114580897 yago:Thing100002452 yago:Protein114728724 yago:Relation100031921 yago:Substance100019613 yago:OrganicCompound114727670 yago:Compound114818238 yago:Molecule114682133 yago:Macromolecule114944888 yago:Matter100020827 yago:Chemical114806838 yago:Abstraction100002137 yago:WikicatIntegralMembraneProteins yago:Part113809207 dbo:TelevisionShow
rdfs:label
Cadena de transporte de electrones 전자전달계 Chaîne de transport d'électrons 電子伝達系 Catena di trasporto degli elettroni Rantai transpor elektron Electron transport chain 電子傳遞鏈 Slabhra iompair leictreon miteacoindreach Elektronový transportní řetězec سلسلة نقل الإلكترون Cadena de transport d'electrons Електронтранспортний ланцюг Elektronentransportketen Elektroien garraio kate Elektronentransportkette Дыхательная цепь переноса электронов Elektrontransportkedja
rdfs:comment
La cadena de transporte de electrones que se encuentran en la membrana interna de bacterias, en la membrana interna mitocondrial​ o en las membranas tilacoidales, que mediante reacciones bioquímicas producen trifosfato de adenosina (ATP),​ que es el compuesto energético que utilizan los seres vivos. Solo dos fuentes de energía son utilizadas por los organismos vivos: reacciones de reducción-oxidación y la luz solar (fotosíntesis). Los organismos que utilizan las reacciones redox para producir ATP se les conoce con el nombre de quimioautótrofos, mientras que los que utilizan la luz solar para tal evento se les conoce por el nombre de fotoautótrofos.​ Ambos tipos de organismos utilizan sus cadenas de transporte de electrones para convertir la energía en ATP. Elektronový transportní řetězec je kaskáda molekul, skrz něž jsou přenášeny elektrony za postupného poklesu jejich energie. Tento pokles energie může být následně spřažen s celou řadou významných biochemických procesů – elektronové transportní řetězce v mitochondriích a v tylakoidech chloroplastů jsou využívány k tvorbě protonového gradientu napříč membránou, což následně umožňuje syntézu ATP. 전자전달계(電子傳達系, electron transport chain, ETC)란 생명체의 광합성과 호흡과정 중 고에너지 전자가 연쇄적인 산화-환원을 거치며 이동하는 반응계를 뜻한다. 고에너지 전자는 전자전달계를 타고 이동하면서 미토콘드리아의 막간 강이나 엽록체의 틸라코이드 루멘으로 양성자를 펌핑함으로써 농도 기울기를 형성한다. 이로 인해 발생하는 양성자 구동력(Proton Motive Force, PMF)은 생화학적인 삼투압 방법으로 ATP를 생성하는데 이용된다. 이것을 산화적 인산화(oxidative phosphorylation)라고 부르고, 해당과정 등은 기질수준 인산화(substrate-level phosphorylation)라고 부른다. 이러한 ETC는 일반적인 해당과정 및 시트르산 회로의 포도당 산화 전과정을 전제하고 있다. Rantai transpor elektron (bahasa Inggris: electron transport chain, respiratory chain, ETC) merupakan serangkaian rantai dalam membran yang terdiri dari protein kompleks yang mentransfer elektron dari donor elektron menuju akseptor elektron melalui reaksi redoks (reduksi dan oksidasi yang terjadi secara bersamaan). Transfer elektron ini akan mentransfer proton (H+) melintasi membran. Secara keseluruhan, rantai transpor elektron terdiri dari protein, enzim, dan molekul-molekul lainnya. Una cadena de transport d'electrons és un sistema bioquímic que acobla la transferència d'electrons entre un donador d'electrons (p. ex.: NADH) i un acceptor d'electrons (p. ex.: O₂) amb la transferència d'ions H+ (protons) a través d'una membrana cel·lular, resultant-ne un gradient electroquímic de protons que es fa servir per generar energia química en forma de trifosfat d'adenosina (ATP). Les cadenes de transport d'electrons són els mecanismes cel·lulars utilitzats per a l'extracció d'energia de la llum solar en la fotosíntesi i també de les reaccions redox, com ara l'oxidació de sucres (respiració). An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H+ ions) across a membrane. The electrons that transferred from NADH and FADH2 to the ETC involves 4 multi-subunit large enzymes complexes and 2 mobile electron carriers. Many of the enzymes in the electron transport chain are membrane-bound. سلسلة نقل الإلكترون (بالإنجليزية:electron transport chain) هي العملية الخلوية التي تترافق مع الحوامل الإلكترونية electron carrier (أيونات) مثل جزيء NADH وثنائي نيوكليوتيد الفلافين والأدينين إضافة لتفاعلات كيميائية حيوية وسيطة تقوم بانتاج نهائي للأدينوزين الثلاثي الفوسفات (ATP), وهو عُملة الطاقة الأساسية للحياة في المتعضيات. يوجد فقط مصدرين للطاقة في المتعضيات الحية : تفاعلات أكسدة-إختزال redox) يشترك فيها الأكسجين بالنسبة إلى مملكة الحيوان ؛ أو تشترك أشعة الشمس وطاقتها ( في عملية التخليق الضوئي photosynthesis) في النباتات. Електронтранспортний ланцюг (також відомий під назвою «електронно-транспортний ланцюжок», «ланцюжок електронної передачі») — біохімічні реакції, виробництва АТФ, основного «палива» клітини, необхідного для її роботи. Тільки два джерела енергії доступні до живих організмів: окислювально-відновлювальні реакції і сонячне світло (фотосинтез). Організми, які використовують окислювально-відновлювальні реакції для отримання АТФ називаються хемотрофами. Організми, які використовують сонячне світло для отримання АТФ називаються фототрофами. Як хемотрофи, так і фототрофи використовують електронні транспортні ланцюжки для перетворення енергії на АТФ. Дыхательная цепь переноса электронов, также электрон-транспортная цепь (сокр. ЭТЦ, англ. ETC, Electron transport chain) — система трансмембранных белков и переносчиков электронов, необходимых для поддержания энергетического баланса. ЭТЦ поддерживает баланс за счёт переноса электронов и протонов из НАД∙Н и ФАДН2 в акцептор электронов. В случае аэробного дыхания акцептором может быть молекулярный кислород (О2). В случае анаэробного дыхания акцептором могут быть NO3−, NO2−, Fe3+, фумарат, диметилсульфоксид, сера, SO42−, CO2 и т. д. ЭТЦ у прокариот локализована в ЦПМ, у эукариот — на внутренней мембране митохондрий. Переносчики электронов расположены в порядке уменьшения сродства к электрону, то есть по своему окислительно-восстановительному потенциалу, где у акцептора самое сильное сродство к Als Elektronentransportkette wird ein biologischer Prozess bezeichnet, bei dem mehrere elektronenübertragende Moleküle beim Transport von Elektronen von einem Donator zu einem oder mehreren Akzeptoren zusammenwirken. Als Folge davon entsteht ein elektrochemischer Protonengradient ΔP über der Membran, welcher durch chemiosmotische Kopplung die von der ATP-Synthase bewirkte Synthese von ATP aus ADP antreibt. Voraussetzung dafür ist, dass die Komponenten dieses Prozesses in eine Biomembran eingebettet sind. 電子伝達系(でんしでんたつけい、英: Electron transport chain)は、生物が好気呼吸を行う時に起こす複数の代謝系の最終段階の反応系である。別名水素伝達系、呼吸鎖などとも呼ばれる。水素伝達系という言葉は高校の教科改定で正式になくなった(ただ言葉として使っている人はいる)。 En elektrontransportkedja är ett arrangemang av proteiner som lämnar en elektron till varandra så att den genomlöper en sekvens av allt lägre potentiella energier. De allra flesta levande organismerna har elektrontransportkedjor. Deras funktion är att omvandla kemisk energi eller ljusenergi till andra former av kemisk energi (till exempel ATP) som organismen kan använda till de processer som kräver energitillskott. De två vanligaste elektrontransportkedjorna är: 電子傳遞鏈又稱呼吸鏈,是氧化磷酸化的一部分,位于原核生物細胞膜或者真核生物的粒線體内膜上,葉綠體在類囊體膜上進行光合磷酸化過程,高能電子在膜上一系列蛋白傳送的過程,藉由膜蛋白的氧化與還原將其能量逐漸釋放出來,造成膜外與膜內質子濃度的差異(proton-gradient),而這些質子(H+離子)再由高濃度往低濃度運送,伴隨著電子轉移穿膜,其中產生的電化學質子濃度的差異驅動三磷酸腺苷(ATP)合成。電子在電子傳遞鏈中的最終受體是氧分子。 電子傳遞鏈通過氧化還原反應,從陽光在光合作用中,或者如在醣類,細胞呼吸氧化的情況下獲取能量。在真核生物中,一個重要的電子傳遞鏈在線粒體內膜發現,通過使用ATP合成酶作氧化磷酸化反應。還發現在有光合作用的真核生物葉綠體的類囊體膜上。在細菌中電子傳輸鏈位於其細胞膜上。 在葉綠體中,光驅動水轉化為氧,並藉由傳遞H+離子跨越葉綠體膜轉化NADP+成NADPH。在粒線體中,則是將氧轉化成水,NADH至NAD+和琥珀酸鹽至富馬酸鹽建立質子梯度。 包括了四個膜蛋白複合物和脂溶性電子載體,用於將還原電勢轉化爲跨膜的質子梯度。 Elektroien garraio katea (ingeleraz Electron Transport Chain )elektroiak garraiatzen dituzten konplexu multzo batek osatzen duen katea da, H+ak mintzean zehar transferituz ATPak ekoiztea helburu duena. Prozesu honi fosforilazio oxidatzailea esaten zaio, eta argi izpien bidez gertatzen denari fotofosforilazio oxidatzailea. Garraio hau elektroi emaileetatik elektroi hartzailetara emango da erredox erreakzioen (erredukzio zein oxidazio) bidez, hauetan sortutako energia erabiliz, mintzaren protoi garraioa eman eta energia lortzeko prozesua ahalbidetzen da. La catena di trasporto degli elettroni è un processo cellulare di ossidoriduzione che avviene nei mitocondri tramite trasferimento di elettroni. È un meccanismo fondamentale per la respirazione cellulare e costituisce la prima parte della fosforilazione ossidativa, che termina con la sintesi di ATP. De elektronentransportketen is een reeks van membraan-gebonden eiwitcomplexen die de overdracht van elektronen katalyseren, om zo protonen (H+-ionen) over een membraan te pompen. Elektronen uit energierijke stoffen worden stapsgewijs doorgegeven, op basis van oplopende elektronegativiteit. Tijdens dit doorgeven worden er H+-ionen over het membraan getransporteerd, iets waarmee energie kan worden gegenereerd. De elektronentransportketen is opgebouwd uit grote enzymen en enkele kleine elektronendragers, zoals ubichinon en cytochromen. Une chaîne de transport d'électrons est une série d'enzymes et de coenzymes qui réalise globalement deux actions simultanément : elle transfère des électrons depuis des donneurs d'électrons vers des accepteurs d'électrons au cours de réactions d'oxydoréduction successives, et elle assure le pompage de protons ou d'autres cations à travers une membrane biologique. Ceci a pour effet de générer un gradient de concentration de protons à travers cette membrane, d'où un gradient électrochimique dont l'énergie potentielle peut être récupérée par des ATP synthases pour phosphoryler des molécules d'ADP en ATP. L'accepteur final d'électrons est généralement l'oxygène chez les organismes aérobies, mais peut être un autre oxydant chez certaines espèces.
foaf:depiction
n15:Mitochondrial_electron_transport_chain—Etc4.svg n15:ATP-Synthase.svg n15:Thylakoid_membrane_3.svg
dcterms:subject
dbc:Cellular_respiration dbc:Integral_membrane_proteins
dbo:wikiPageID
92236
dbo:wikiPageRevisionID
1118758962
dbo:wikiPageWikiLink
dbr:Adenosine_triphosphate dbr:Anaerobic_organism dbr:Anaerobic_respiration dbr:Gibbs_free_energy dbr:Electron_transfer dbr:NADH dbr:Citric_acid_cycle dbr:Brown_adipose_tissue dbr:Gibb's_free_energy dbr:Respirasome dbr:Sulfate dbr:Krebs_cycle dbr:Dehydrogenase dbr:Hydrogenase dbr:Electrochemical_gradient dbr:Cytochrome_c dbr:Flavin_mononucleotide dbr:Coenzyme_Q dbr:Redox dbr:Electron_acceptor dbr:Amino_acid_metabolism dbr:Enzymatic dbr:Phototrophs dbr:Flavin_adenine_dinucleotide dbr:Intermembrane_space dbr:Respiratory_complex_II dbr:Proton_pump dbr:Proton_gradient dbr:Electron_donor dbr:Charge-transfer_complex dbr:Cytochromes dbr:Ubiquinone dbr:Succinate_dehydrogenase dbr:Plastoquinone dbr:Ion_channel dbr:Menaquinone dbr:Peter_D._Mitchell dbr:Inner_mitochondrial_membrane dbr:Cellular_respiration dbr:Thermogenin dbr:Cytochrome dbr:Mitochondrial_matrix dbr:FADH2 dbr:Bacteria dbr:Oxidative_phosphorylation dbr:Methanogenesis dbr:Organotroph dbr:Exergonic_process dbr:Archaea n38:Thylakoid_membrane_3.svg dbr:Q_cycle dbr:Lithotroph dbr:Nicotinamide_adenine_dinucleotide dbr:Redox_potential dbr:Mitochondria dbr:Protein_complex dbr:Proton-motive_force dbr:Eukaryotes dbr:Eukaryotic dbr:ATP_synthase dbc:Cellular_respiration n38:ATP-Synthase.svg n38:Mitochondrial_electron_transport_chain—Etc4.svg dbr:Enzyme dbr:Symbiogenesis dbr:Nobel_Prize_in_Chemistry dbr:Electron_equivalent dbr:Biological_membrane dbr:Oxygen dbr:Cytochrome_bc1_complex dbr:Phylloquinone dbr:Hydrogen_hypothesis dbr:John_Wiley_&_Sons dbr:CoRR_hypothesis dbr:Inorganic_phosphate dbr:Membrane_potential dbr:Reverse_electron_flow dbr:Cytochrome_c_oxidase dbr:Thermogenesis dbr:Iron–sulfur_cluster dbr:Oxford_University_Press dbr:Chemiosmosis dbr:Fatty_acid_metabolism dbr:Hypoxia_(environmental) dbr:Electron dbr:Photophosphorylation dbr:Quinone dbr:Dimercaprol dbr:Prokaryotes dbr:Proton dbr:Respiratory_complex_I dbr:Adenosine_diphosphate dbr:Sulfolobus dbc:Integral_membrane_proteins dbr:Complex_III dbr:Complex_IV
dbo:wikiPageExternalLink
n16:lehningerprincip00lehn_0 n47:124 n16:physiologybioche00whit n57:electron-transport-chain%3Fplaylist=Biology
owl:sameAs
dbpedia-eu:Elektroien_garraio_kate dbpedia-it:Catena_di_trasporto_degli_elettroni dbpedia-cs:Elektronový_transportní_řetězec dbpedia-ms:Rantaian_pengangkutan_elektron dbpedia-simple:Electron_transport_chain dbpedia-id:Rantai_transpor_elektron dbpedia-bg:Електрон-транспортна_верига dbpedia-sv:Elektrontransportkedja dbpedia-gl:Cadea_de_transporte_electrónico dbpedia-tr:Elektron_taşıma_sistemi yago-res:Electron_transport_chain dbpedia-uk:Електронтранспортний_ланцюг wikidata:Q211016 dbpedia-fa:زنجیره_انتقال_الکترون dbpedia-hu:Elektrontranszportlánc dbpedia-sr:Lanac_transporta_elektrona freebase:m.0mz2c dbpedia-zh:電子傳遞鏈 dbpedia-ja:電子伝達系 n31:ഇലക്ട്രോൺ_ട്രാൻസ്പോർട്ട്_ശൃംഖല dbpedia-ru:Дыхательная_цепь_переноса_электронов dbpedia-th:ลูกโซ่ของการขนส่งอิเล็กตรอน dbpedia-vi:Chuỗi_chuyền_điện_tử n35:Mitoxondriyaning_elektron_transport_zanjiri n36:Lanac_transporta_elektrona dbpedia-da:Elektrontransportkæde dbpedia-sh:Lanac_transporta_elektrona n40:zzrJ dbpedia-es:Cadena_de_transporte_de_electrones dbpedia-fi:Elektroninsiirtoketju dbpedia-de:Elektronentransportkette dbpedia-sl:Dihalna_veriga dbpedia-ga:Slabhra_iompair_leictreon_miteacoindreach dbpedia-nl:Elektronentransportketen dbpedia-ca:Cadena_de_transport_d'electrons dbpedia-ko:전자전달계 dbpedia-no:Elektrontransportkjede dbpedia-ar:سلسلة_نقل_الإلكترون dbpedia-ro:Lanțul_transportor_de_electroni dbpedia-fr:Chaîne_de_transport_d'électrons
dbp:wikiPageUsesTemplate
dbt:Short_description dbt:Cite_book dbt:Cite_journal dbt:Further dbt:Citation_needed dbt:Cellular_respiration dbt:Electron_transport_chain dbt:Sup dbt:Sub dbt:Refbegin dbt:Reflist dbt:Refend dbt:MeshName dbt:EC_number
dbo:thumbnail
n15:Mitochondrial_electron_transport_chain—Etc4.svg?width=300
dbo:abstract
سلسلة نقل الإلكترون (بالإنجليزية:electron transport chain) هي العملية الخلوية التي تترافق مع الحوامل الإلكترونية electron carrier (أيونات) مثل جزيء NADH وثنائي نيوكليوتيد الفلافين والأدينين إضافة لتفاعلات كيميائية حيوية وسيطة تقوم بانتاج نهائي للأدينوزين الثلاثي الفوسفات (ATP), وهو عُملة الطاقة الأساسية للحياة في المتعضيات. يوجد فقط مصدرين للطاقة في المتعضيات الحية : تفاعلات أكسدة-إختزال redox) يشترك فيها الأكسجين بالنسبة إلى مملكة الحيوان ؛ أو تشترك أشعة الشمس وطاقتها ( في عملية التخليق الضوئي photosynthesis) في النباتات. المتعضيات التي تستخدم تفاعلات الأكسدة -اختزال لتنتج (ATP) تدعى chemotroph. اما المتعضيات التي تعتمد على ضوء الشمس فتدعى phototroph وهي خاصة بالنبات، حيث تنتج سكر ونشا وزيوت وبروتينات. كلا النوعين يستخدمان سلسلة نقل الإلكترون لتحويل الطاقة إلى آ.تي.بي ATP (أدينوسين ثلاثي الفوسفات) . يتم هذا عن طريق عملية ثلاثية الخطوات : انتقال للإلكترونات بين جزيئات بروتينية خاصة يتم خلالها تفاعلات أكسدة- إختزال في سلسلة من الخطوات،استخدام حركة الإلكترونات والبروتونات بين جزيئات البروتينات الخاصة بالأيض لإجبار خلق حالة عدم توازن في تركيز البروتونات على طرفي الغشاء الداخلي للمتقدرات الموجودة داخل الخلايا المختلفة، مما يخلق تدرج كهركيميائي electrochemical gradient En elektrontransportkedja är ett arrangemang av proteiner som lämnar en elektron till varandra så att den genomlöper en sekvens av allt lägre potentiella energier. De allra flesta levande organismerna har elektrontransportkedjor. Deras funktion är att omvandla kemisk energi eller ljusenergi till andra former av kemisk energi (till exempel ATP) som organismen kan använda till de processer som kräver energitillskott. Elektrontransportkedjor kan bestå av många olika slags proteiner och använda sig av en mängd olika substrat. Gemensamt för dem är att proteinerna bildar större proteinkomplex som sitter inbäddade i ett membran. Proteinerna innehåller metallcentra som möjliggör elektrontransport. När elektroner flödar genom proteinkomplexen i kedjan resulterar det i att protoner eller andra positivt laddade jonslag pumpas från ena sidan av membranet till den andra så att en laddningskillnad - membranpotential - uppstår. Membranpotentialen kan sedan användas för att utföra arbete, antingen direkt, till exempel för att driva transport av användbara ämnen in i cellen, eller också kan ett annat proteinkomplex använda membranpotentialen för att tillverka ATP, som är våra kroppars primära energivaluta. De två vanligaste elektrontransportkedjorna är: 1. * Andningskedjan i våra mitokondrier, som omvandlar energi som kommer från sönderdelandet av kolhydrater, fett och proteiner i maten vi äter till kroppens "energivaluta" ATP. 2. * Fotosyntesen i växternas kloroplaster, som omvandlar energin i ljus (fotoner) till kemisk energi i form av till exempel kolhydrater. Une chaîne de transport d'électrons est une série d'enzymes et de coenzymes qui réalise globalement deux actions simultanément : elle transfère des électrons depuis des donneurs d'électrons vers des accepteurs d'électrons au cours de réactions d'oxydoréduction successives, et elle assure le pompage de protons ou d'autres cations à travers une membrane biologique. Ceci a pour effet de générer un gradient de concentration de protons à travers cette membrane, d'où un gradient électrochimique dont l'énergie potentielle peut être récupérée par des ATP synthases pour phosphoryler des molécules d'ADP en ATP. L'accepteur final d'électrons est généralement l'oxygène chez les organismes aérobies, mais peut être un autre oxydant chez certaines espèces. Les chaînes de transport d'électrons ont pour fonction d'extraire l'énergie des électrons à haut potentiel de transfert issus essentiellement d'une part de la dégradation des biomolécules dans le cadre de la respiration cellulaire, et d'autre part de l'excitation des centres réactionnels des photosystèmes dans le cadre de la photosynthèse. Chez les eucaryotes, il existe ainsi une importante chaîne de transport d'électrons dans la membrane mitochondriale interne où se déroule la phosphorylation oxydative utilisant une ATP synthase, tandis que les plantes ont une seconde chaîne de transfert d'électrons dans la membrane des thylakoïdes au sein de leurs chloroplastes, où se déroule la photosynthèse. Chez les bactéries, la chaîne de transport d'électrons se trouve dans leur membrane plasmique. Dans les chloroplastes, la lumière permet d'oxyder l'eau en oxygène d'une part, et de réduire le NADP+ en NADPH d'autre part, avec injection concomitante de protons dans le lumen des thylakoïdes. Dans les mitochondries, l'oxygène est réduit en eau tandis que le NADH est oxydé en NAD+ et que le succinate est converti en fumarate, avec expulsion concomitante de protons hors de la matrice mitochondriale. Les chaînes de transport d'électrons sont des sources importantes de dérivés réactifs de l'oxygène par transfert inopiné d'électrons à des molécules d'oxygène conduisant à la formation d'ions superoxyde O2•− et peroxyde O22− susceptibles d'aggraver le stress oxydant. 전자전달계(電子傳達系, electron transport chain, ETC)란 생명체의 광합성과 호흡과정 중 고에너지 전자가 연쇄적인 산화-환원을 거치며 이동하는 반응계를 뜻한다. 고에너지 전자는 전자전달계를 타고 이동하면서 미토콘드리아의 막간 강이나 엽록체의 틸라코이드 루멘으로 양성자를 펌핑함으로써 농도 기울기를 형성한다. 이로 인해 발생하는 양성자 구동력(Proton Motive Force, PMF)은 생화학적인 삼투압 방법으로 ATP를 생성하는데 이용된다. 이것을 산화적 인산화(oxidative phosphorylation)라고 부르고, 해당과정 등은 기질수준 인산화(substrate-level phosphorylation)라고 부른다. 이러한 ETC는 일반적인 해당과정 및 시트르산 회로의 포도당 산화 전과정을 전제하고 있다. Als Elektronentransportkette wird ein biologischer Prozess bezeichnet, bei dem mehrere elektronenübertragende Moleküle beim Transport von Elektronen von einem Donator zu einem oder mehreren Akzeptoren zusammenwirken. Als Folge davon entsteht ein elektrochemischer Protonengradient ΔP über der Membran, welcher durch chemiosmotische Kopplung die von der ATP-Synthase bewirkte Synthese von ATP aus ADP antreibt. Voraussetzung dafür ist, dass die Komponenten dieses Prozesses in eine Biomembran eingebettet sind. In der Natur ist die Elektronentransportkette in den Vorfahren der Prokaryoten entstanden und vermutlich durch Endosymbiose ein Bestandteil von eukaryotischen Zellen geworden. Bei Eukaryoten findet der Prozess in den Mitochondrien statt. In Pflanzen ist eine weitere Elektronentransportkette an die Photosynthese angekoppelt. Una cadena de transport d'electrons és un sistema bioquímic que acobla la transferència d'electrons entre un donador d'electrons (p. ex.: NADH) i un acceptor d'electrons (p. ex.: O₂) amb la transferència d'ions H+ (protons) a través d'una membrana cel·lular, resultant-ne un gradient electroquímic de protons que es fa servir per generar energia química en forma de trifosfat d'adenosina (ATP). Les cadenes de transport d'electrons són els mecanismes cel·lulars utilitzats per a l'extracció d'energia de la llum solar en la fotosíntesi i també de les reaccions redox, com ara l'oxidació de sucres (respiració). En els cloroplasts, la llum impulsa la conversió d'aigua en oxigen i NADP+ a NADPH amb la transferència de ions H+ a través de membranes del cloroplast. En els mitocondris, que és la conversió d'oxigen a aigua, NADH a NAD+ i succinat a fumarat que es requereixen per generar el gradient de protons. Les cadenes de transport d'electrons són els principals llocs de flux d'electrons cap a l'oxigen, generant superòxid i resultant potencialment en un augment de l'estrès oxidatiu. La cadena de transport d'electrons consisteix en una sèrie de reaccions redox separades espaialment en la qual els electrons són transferits d'una molècula donadora a una molècula acceptora. La força subjacent darrere d'aquestes reaccions és l'energia lliure de Gibbs dels reactius i productes. L'energia lliure de Gibbs és l'energia disponible ("lliure") per produir treball. Qualsevol reacció que disminueix el total d'energia lliure de Gibbs d'un sistema és termodinàmicament espontània. La funció de la cadena de transport d'electrons és produir un gradient electroquímic transmembrana de protons com a resultat de les reaccions redox.Si els protons "flueixen" a través de la membrana, permeten el treball mecànic, com ara la rotació de flagels bacterians. L'ATP sintasa, un enzim altament conservat entre tots els dominis de la vida, converteix aquesta energia mecànica en energia química mitjançant la producció d'ATP,que alimenta la majoria de reaccions cel·lulars. Електронтранспортний ланцюг (також відомий під назвою «електронно-транспортний ланцюжок», «ланцюжок електронної передачі») — біохімічні реакції, виробництва АТФ, основного «палива» клітини, необхідного для її роботи. Тільки два джерела енергії доступні до живих організмів: окислювально-відновлювальні реакції і сонячне світло (фотосинтез). Організми, які використовують окислювально-відновлювальні реакції для отримання АТФ називаються хемотрофами. Організми, які використовують сонячне світло для отримання АТФ називаються фототрофами. Як хемотрофи, так і фототрофи використовують електронні транспортні ланцюжки для перетворення енергії на АТФ. La catena di trasporto degli elettroni è un processo cellulare di ossidoriduzione che avviene nei mitocondri tramite trasferimento di elettroni. È un meccanismo fondamentale per la respirazione cellulare e costituisce la prima parte della fosforilazione ossidativa, che termina con la sintesi di ATP. È costituita da una serie di complessi enzimatici lipoproteici capaci di acquisire atomi di idrogeno da molecole donatrici quali i coenzimi NADH, FADH2 e succinati. La catena di trasporto separa gli elettroni dai protoni. Gli elettroni, attraverso la membrana interna mitocondriale, vengono veicolati tramite vari complessi proteici verso l'accettore finale che è l'ossigeno. I trasportatori hanno potenziali di riduzione crescenti, in modo che gli elettroni, passando a uno stato energetico via via inferiore, liberano energia utilizzata per attivare i canali di trasporto transmembrana. I protoni vengono liberati all'interno dello spazio intermembrana creando ai due lati della membrana interna, tramite il gradiente di concentrazione di ioni H+, un potenziale elettrochimico, utilizzato nella tappa finale in parte per la sintesi di ATP e in parte come fonte di calore necessario al mantenimento della temperatura corporea. Elektronový transportní řetězec je kaskáda molekul, skrz něž jsou přenášeny elektrony za postupného poklesu jejich energie. Tento pokles energie může být následně spřažen s celou řadou významných biochemických procesů – elektronové transportní řetězce v mitochondriích a v tylakoidech chloroplastů jsou využívány k tvorbě protonového gradientu napříč membránou, což následně umožňuje syntézu ATP. Elektroien garraio katea (ingeleraz Electron Transport Chain )elektroiak garraiatzen dituzten konplexu multzo batek osatzen duen katea da, H+ak mintzean zehar transferituz ATPak ekoiztea helburu duena. Prozesu honi fosforilazio oxidatzailea esaten zaio, eta argi izpien bidez gertatzen denari fotofosforilazio oxidatzailea. Garraio hau elektroi emaileetatik elektroi hartzailetara emango da erredox erreakzioen (erredukzio zein oxidazio) bidez, hauetan sortutako energia erabiliz, mintzaren protoi garraioa eman eta energia lortzeko prozesua ahalbidetzen da. Elektroi fluxua erredox potentzial baxuko erredox zentruetatik potentzial altuko zentroetara ematen da eta hau oso exegonikoa da. Erreakzio hauetatik lortutako energia-askea erabiliz, protoi punpaketa ematen da matrixetik mintzen arteko gunera. Honen ondorioz, protoi gradiente elektrokimikoa sortu eta fosforilazio oxidatiboa ATP sintasarekin lotuz, adenosina trifosfatoaren (ATP) sintesia bultzatzen da. Elektroien garraio kateak mitokondrioen barneko mintzean (matrixean), prokariotoen zelula mintzean eta tilakoideen mintzean kokatzen dira. La cadena de transporte de electrones que se encuentran en la membrana interna de bacterias, en la membrana interna mitocondrial​ o en las membranas tilacoidales, que mediante reacciones bioquímicas producen trifosfato de adenosina (ATP),​ que es el compuesto energético que utilizan los seres vivos. Solo dos fuentes de energía son utilizadas por los organismos vivos: reacciones de reducción-oxidación y la luz solar (fotosíntesis). Los organismos que utilizan las reacciones redox para producir ATP se les conoce con el nombre de quimioautótrofos, mientras que los que utilizan la luz solar para tal evento se les conoce por el nombre de fotoautótrofos.​ Ambos tipos de organismos utilizan sus cadenas de transporte de electrones para convertir la energía en ATP. 電子傳遞鏈又稱呼吸鏈,是氧化磷酸化的一部分,位于原核生物細胞膜或者真核生物的粒線體内膜上,葉綠體在類囊體膜上進行光合磷酸化過程,高能電子在膜上一系列蛋白傳送的過程,藉由膜蛋白的氧化與還原將其能量逐漸釋放出來,造成膜外與膜內質子濃度的差異(proton-gradient),而這些質子(H+離子)再由高濃度往低濃度運送,伴隨著電子轉移穿膜,其中產生的電化學質子濃度的差異驅動三磷酸腺苷(ATP)合成。電子在電子傳遞鏈中的最終受體是氧分子。 電子傳遞鏈通過氧化還原反應,從陽光在光合作用中,或者如在醣類,細胞呼吸氧化的情況下獲取能量。在真核生物中,一個重要的電子傳遞鏈在線粒體內膜發現,通過使用ATP合成酶作氧化磷酸化反應。還發現在有光合作用的真核生物葉綠體的類囊體膜上。在細菌中電子傳輸鏈位於其細胞膜上。 在葉綠體中,光驅動水轉化為氧,並藉由傳遞H+離子跨越葉綠體膜轉化NADP+成NADPH。在粒線體中,則是將氧轉化成水,NADH至NAD+和琥珀酸鹽至富馬酸鹽建立質子梯度。 包括了四個膜蛋白複合物和脂溶性電子載體,用於將還原電勢轉化爲跨膜的質子梯度。 Rantai transpor elektron (bahasa Inggris: electron transport chain, respiratory chain, ETC) merupakan serangkaian rantai dalam membran yang terdiri dari protein kompleks yang mentransfer elektron dari donor elektron menuju akseptor elektron melalui reaksi redoks (reduksi dan oksidasi yang terjadi secara bersamaan). Transfer elektron ini akan mentransfer proton (H+) melintasi membran. Secara keseluruhan, rantai transpor elektron terdiri dari protein, enzim, dan molekul-molekul lainnya. Elektron-elektron ini mengalir melintasi rantai elektron. Keseluruhan reaksi redoks yang terjadi pada rantai transpor elektron merupakan reaksi , yaitu reaksi yang melepaskan energi. Energi ini akan digunakan untuk membuat gradien elektrokimia yang akan mendorong sintesis adenosina trifosfat (ATP). Pada akhirnya, aliran elektron ini akan berakhir pada oksigen sebagai akseptor elektron terkahir, mengasilkan H2O (Air). Pada respirasi anaerobik, ketidaktersediaan oksigen akan diganti dengan molekul lain, seperti sulfat yang menghasilkan H2S (asam sulfat), nitrat, ataupun sulfur. Hal ini merupakan salah satu bentuk adaptasi terhadap ketersediaan molekul pada habitat organisme tersebut. Pada rantai transpor elektron, reaksi redoks yang terjadi didorong oleh keadaan energi bebas Gibbs pada komponen-komponen rantai ini. Energi bebas Gibbs berhubungan dengan suatu besaran yang disebut potensial redoks (kecenderungan suatu senyawa untuk menangkap elektron, atau tereduksi, yang diukur dalam satuan Volt). Suatu elektron bergerak dari potensial redoks yang rendah menuju potensial redoks yang tinggi. Pergerakan elektron tersebut akan melepaskan energi. Energi inilah yang nantinya ditangkap oleh kompleks protein pada rantai transpor elektron. Protein kompleks akan menggunakan energi ini untuk melepaskan proton ke lumen dan menciptakan perbedaan konsentrasi (gradien) proton diantara membran. Gradien merupakan kondisi yang tidak stabil. Untuk stabil, proton diantara kedua sisi membran harus sama besar. Okay bestie, karena hal itulah proton yang tadi di pompa akan berusaha kembali ke dalam sisi membran lewat ATP sintase. ATP sintase akan menggunakan perpindahan proton ini untuk menggerakkan sintesis ATP dengan fosforilasi oksidatif. Rantai transpor elektron dan fosforilasi oksidatif terdapat di membran dalam mitokondria (cristae). Elektron-elektron ini berasal dari molekul-molekul yang sebelumnya tereduksi seperti NADH dan FADH. Pada tumbuhan atau eukariot yang berfotosintesis, cahaya matahari akan menggerakkan elektron lewat hingga pada akhirnya menghasilkan ATP. Pada bakteri, rantai transpor elektron sangat bervariasi. Namun pada makhluk hidup manapun intinya tetap sama, yaitu serangkaian reaksi redoks yang menciptakan gradien elektrokimia yang akan mensintesis ATP lewat fosforilasi oksidatif melalui ATP Sintase. De elektronentransportketen is een reeks van membraan-gebonden eiwitcomplexen die de overdracht van elektronen katalyseren, om zo protonen (H+-ionen) over een membraan te pompen. Elektronen uit energierijke stoffen worden stapsgewijs doorgegeven, op basis van oplopende elektronegativiteit. Tijdens dit doorgeven worden er H+-ionen over het membraan getransporteerd, iets waarmee energie kan worden gegenereerd. De elektronentransportketen is opgebouwd uit grote enzymen en enkele kleine elektronendragers, zoals ubichinon en cytochromen. Het doel van een elektronentransportketen is het aanleggen van een gradiënt van protonen. De energie die in dit gradiënt is opgeslagen, zal gebruikt worden om adenosinetrifosfaat (ATP) te produceren door middel van het enzym ATP-synthase. Bij aerobe organismen eindigt de stroom van elektronen met zuurstof (O2). Bij anaerobe organismen worden andere elektronenacceptoren gebruikt, zoals nitraat. In eukaryoten bevindt de elektronentransportketen zich in de binnenste membranen van mitochondriën. Binnen mitochondriën worden voedingsstoffen verbrand (in de zogenaamde citroenzuurcyclus) en daarbij ontstaat onder meer het energierijke molecuul NADH. Deze levert zijn elektronen aan het eerste eiwitcomplex in de keten (Complex I). In fotosynthetiserende organismen, zoals planten, bevindt zich een elektronentransportketen in de chloroplast. Energie uit licht wordt hier gebruikt om elektronen uit water te splitsen. Bij bacteriën en archaea bevinden de elektronentransportketens zich in het plasmamembraan. 電子伝達系(でんしでんたつけい、英: Electron transport chain)は、生物が好気呼吸を行う時に起こす複数の代謝系の最終段階の反応系である。別名水素伝達系、呼吸鎖などとも呼ばれる。水素伝達系という言葉は高校の教科改定で正式になくなった(ただ言葉として使っている人はいる)。 An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H+ ions) across a membrane. The electrons that transferred from NADH and FADH2 to the ETC involves 4 multi-subunit large enzymes complexes and 2 mobile electron carriers. Many of the enzymes in the electron transport chain are membrane-bound. The flow of electrons through the electron transport chain is an exergonic process. The energy from the redox reactions creates an electrochemical proton gradient that drives the synthesis of adenosine triphosphate (ATP). In aerobic respiration, the flow of electrons terminates with molecular oxygen as the final electron acceptor. In anaerobic respiration, other electron acceptors are used, such as sulfate. In an electron transport chain, the redox reactions are driven by the difference in the Gibbs free energy of reactants and products. The free energy released when a higher-energy electron donor and acceptor convert to lower-energy products, while electrons are transferred from a lower to a higher redox potential, is used by the complexes in the electron transport chain to create an electrochemical gradient of ions. It is this electrochemical gradient that drives the synthesis of ATP via coupling with oxidative phosphorylation with ATP synthase. In eukaryotic organisms the electron transport chain, and site of oxidative phosphorylation, is found on the inner mitochondrial membrane. The energy released by reactions of oxygen and reduced compounds such as cytochrome c and (indirectly) NADH and FADH2 is used by the electron transport chain to pump protons into the intermembrane space, generating the electrochemical gradient over the inner mitochondrial membrane. In photosynthetic eukaryotes, the electron transport chain is found on the thylakoid membrane. Here, light energy drives electron transport through a proton pump and the resulting proton gradient causes subsequent synthesis of ATP. In bacteria, the electron transport chain can vary between species but it always constitutes a set of redox reactions that are coupled to the synthesis of ATP through the generation of an electrochemical gradient and oxidative phosphorylation through ATP synthase. Дыхательная цепь переноса электронов, также электрон-транспортная цепь (сокр. ЭТЦ, англ. ETC, Electron transport chain) — система трансмембранных белков и переносчиков электронов, необходимых для поддержания энергетического баланса. ЭТЦ поддерживает баланс за счёт переноса электронов и протонов из НАД∙Н и ФАДН2 в акцептор электронов. В случае аэробного дыхания акцептором может быть молекулярный кислород (О2). В случае анаэробного дыхания акцептором могут быть NO3−, NO2−, Fe3+, фумарат, диметилсульфоксид, сера, SO42−, CO2 и т. д. ЭТЦ у прокариот локализована в ЦПМ, у эукариот — на внутренней мембране митохондрий. Переносчики электронов расположены в порядке уменьшения сродства к электрону, то есть по своему окислительно-восстановительному потенциалу, где у акцептора самое сильное сродство к электрону. Поэтому транспорт электрона на всём протяжении цепи протекает самопроизвольно с выделением энергии. Выделение энергии в межмембранное пространство при переносе электронов происходит ступенчато, в виде протона (H+). Протоны из межмембранного пространства попадают в протонную помпу, где наводят протонный потенциал. Протонный потенциал преобразуется АТФ-синтазой в энергию химических связей АТФ. Сопряжённая работа ЭТЦ и АТФ-синтазы носит название окислительного фосфорилирования.
gold:hypernym
dbr:Series
prov:wasDerivedFrom
wikipedia-en:Electron_transport_chain?oldid=1118758962&ns=0
dbo:wikiPageLength
33120
foaf:isPrimaryTopicOf
wikipedia-en:Electron_transport_chain