This HTML5 document contains 167 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n16http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
n17https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
dbpedia-ukhttp://uk.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-plhttp://pl.dbpedia.org/resource/
dbpedia-pthttp://pt.dbpedia.org/resource/
n13http://commons.wikimedia.org/wiki/Special:FilePath/
dbpedia-fahttp://fa.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-zhhttp://zh.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Gauge_fixing
rdf:type
yago:WikicatGaugeTheories yago:Abstraction100002137 yago:Cognition100023271 yago:HigherCognitiveProcess105770664 yago:Theory105989479 owl:Thing yago:Process105701363 yago:Explanation105793000 yago:Thinking105770926 yago:PsychologicalFeature100023100
rdfs:label
Калібрування векторного потенціалу Fixação de gauge 規範固定 Калибровка векторного потенциала Gauge fixing
rdfs:comment
库仑规范(Coulomb gauge)是一种横场条件,定义为 。 标量势φ和矢量势A对电磁场的确定不是唯一的,有可能对它们引进适当的限制条件。 在库仑规范下,时变电磁场情形下,标量势φ由方程确定。这是瞬时的库仑势方程,库仑规范的名称由此而得。 在推导磁矢势时候可以借助来得到 。 In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space. Most of the quantitative physical predictions of a gauge theory can only be obtained under a coherent prescription for suppressing or ignoring these unphysical degrees of freedom. Калибро́вка ве́кторного потенциа́ла — наложение дополнительных условий, позволяющих однозначно вычислить векторный потенциал электромагнитного поля при решении тех или иных физических задач. Налагаемые условия являются искусственными и служат для упрощения математических выкладок. Наиболее широкое распространение получили калибровка Кулона и калибровка Лоренца, но существуют и применяются и другие калибровки. Калібрува́ння ве́кторного потенціа́лу — накладення додаткових умов, що дозволяють однозначно обчислити векторний потенціал електромагнітного поля під час розв'язування тих чи інших фізичних задач. Накладені умови є штучними і покликані спростити математичні перетворення. Найбільшого поширення набули калібрування Кулона та калібрування Лоренца, але існують і застосовуються й інші калібрування. Na física de teorias de gauge, fixação de gauge ou fixação de calibre (também chamada escolha de um gauge) denota um procedimento matemático para a cópia com graus de liberdade redundantes em campos variáveis. Por definição, uma teoria de gauge representa fisicamente cada configuração distinta do sistema como uma classe equivalente de configurações de detalhadas. Qualquer duas configurações detalhadas na mesma classe equivalente são relacionadas por uma transformação de gauge, equivalente a uma transformação de simetria ao longo dos eixos geométricos (não físicos) no espaço de configuração. A maioria das predições físicas quantitativas de uma teoria de gauge podem somente ser obtidas sob uma coerente supressão ou ignorando estes graus de liberdade não físicos.
rdfs:seeAlso
dbr:Covariant_formulation_of_classical_electromagnetism
foaf:depiction
n13:Gauge.png
dcterms:subject
dbc:Quantum_electrodynamics dbc:Gauge_theories dbc:Quantum_field_theory dbc:Electromagnetism
dbo:wikiPageID
2000736
dbo:wikiPageRevisionID
1114324842
dbo:wikiPageWikiLink
dbc:Quantum_electrodynamics dbr:SU(2) dbr:Richard_Feynman dbr:SU(3) dbr:Normalizing_constant dbr:Change_of_variables dbr:Faddeev–Popov_ghost dbr:Quantum_chromodynamics dbr:Electromagnetic_four-potential dbr:Gribov_ambiguity dbr:Anomalous_magnetic_moment dbr:Extremum dbr:Electromagnetic_radiation dbr:Freeman_Dyson dbr:Auxiliary_field dbr:Symmetry_transformation dbr:Ward–Takahashi_identity dbr:Minkowski_metric dbr:Ghost_(physics) dbr:Lorentz_transformation dbr:Perturbative_expansion dbr:Gauge_theory dbr:Lorentz_invariance dbr:U(1) dbr:Photon_propagator dbr:Lorentz_gauge_condition dbr:Gaussian_units dbr:George_Francis_FitzGerald dbr:Action_principle dbr:4-gradient dbc:Gauge_theories dbr:Gell-Mann_matrices dbr:Helmholtz_decomposition dbr:Pauli_matrix dbr:Frame_bundle dbr:Hendrik_Lorentz dbr:List_of_integration_and_measure_theory_topics dbr:Spin–statistics_theorem dbr:Degrees_of_freedom_(physics_and_chemistry) dbr:Jacobian_matrix_and_determinant dbr:Four-current dbr:Physics dbr:Vladimir_Fock n16:Gauge.png dbr:SI dbr:Renormalization dbr:Logically_consistent dbr:BRST_formalism dbr:Ward_identities dbr:Feynman_diagram dbr:Causality dbr:Maximal_Abelian_subgroup dbr:Lagrangian_density dbr:Non-abelian_gauge_theory dbr:Condensed_matter_physics dbr:Linear_polarization dbr:Nobel_Prize_in_Physics dbr:Magnetic_field dbr:Goldstone_boson dbc:Quantum_field_theory dbr:Mathematical_physics dbr:Oliver_Heaviside dbr:Quantum_electrodynamics dbr:Continuity_equation dbr:Quantum_chemistry dbr:Circularly_polarized dbr:One-loop_order dbr:Virtual_photon dbr:Feynman_rules dbr:Gauge_transformation dbr:Functional_measure dbr:Line_integral dbr:Light_cone dbr:International_System_of_Units dbr:Nakanishi–Lautrup_field dbr:Paul_Dirac dbr:Quantum_field_theory dbr:Gauge_field dbr:Wave_equation dbr:Ludvig_Lorenz dbr:Julian_Schwinger dbr:Magnetic_vector_potential dbr:Polarization_(waves) dbr:Sin-Itiro_Tomonaga dbr:Spin_sum dbr:Field_(physics) dbr:Henri_Poincaré dbr:Functional_integral dbr:Electric_field dbr:Position_four-vector dbr:Josiah_Willard_Gibbs dbr:Electric_potential dbr:Maxwell's_equations dbr:Aharonov–Bohm_effect dbr:Light-cone_coordinates dbr:Quantum_field_theories dbr:Quantization_(physics) dbr:Yang–Mills_theory dbr:Asymptotic_state dbr:Hermann_Weyl dbc:Electromagnetism dbr:Klein–Gordon_equation dbr:Asymptotic_states dbr:General_relativity dbr:Equivalence_class dbr:Electrodynamics
owl:sameAs
dbpedia-pt:Fixação_de_gauge dbpedia-uk:Калібрування_векторного_потенціалу dbpedia-fa:تثبیت_پیمانه n17:4zGEX dbpedia-hu:Mértékszabadság dbpedia-zh:規範固定 wikidata:Q832289 dbpedia-ru:Калибровка_векторного_потенциала yago-res:Gauge_fixing freebase:m.06d24f
dbp:wikiPageUsesTemplate
dbt:Citation_needed dbt:QED dbt:Quantum_field_theory dbt:Ordered_list dbt:Cite_book dbt:EquationNote dbt:Short_description dbt:Reflist dbt:EquationRef dbt:Electromagnetism dbt:Math dbt:See_also dbt:NumBlk
dbo:thumbnail
n13:Gauge.png?width=300
dbo:wikiPageInterLanguageLink
dbpedia-pl:Cechowanie_(fizyka)
dbo:abstract
库仑规范(Coulomb gauge)是一种横场条件,定义为 。 标量势φ和矢量势A对电磁场的确定不是唯一的,有可能对它们引进适当的限制条件。 在库仑规范下,时变电磁场情形下,标量势φ由方程确定。这是瞬时的库仑势方程,库仑规范的名称由此而得。 在推导磁矢势时候可以借助来得到 。 Калибро́вка ве́кторного потенциа́ла — наложение дополнительных условий, позволяющих однозначно вычислить векторный потенциал электромагнитного поля при решении тех или иных физических задач. Налагаемые условия являются искусственными и служат для упрощения математических выкладок. Наиболее широкое распространение получили калибровка Кулона и калибровка Лоренца, но существуют и применяются и другие калибровки. In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space. Most of the quantitative physical predictions of a gauge theory can only be obtained under a coherent prescription for suppressing or ignoring these unphysical degrees of freedom. Although the unphysical axes in the space of detailed configurations are a fundamental property of the physical model, there is no special set of directions "perpendicular" to them. Hence there is an enormous amount of freedom involved in taking a "cross section" representing each physical configuration by a particular detailed configuration (or even a weighted distribution of them). Judicious gauge fixing can simplify calculations immensely, but becomes progressively harder as the physical model becomes more realistic; its application to quantum field theory is fraught with complications related to renormalization, especially when the computation is continued to higher orders. Historically, the search for logically consistent and computationally tractable gauge fixing procedures, and efforts to demonstrate their equivalence in the face of a bewildering variety of technical difficulties, has been a major driver of mathematical physics from the late nineteenth century to the present. Калібрува́ння ве́кторного потенціа́лу — накладення додаткових умов, що дозволяють однозначно обчислити векторний потенціал електромагнітного поля під час розв'язування тих чи інших фізичних задач. Накладені умови є штучними і покликані спростити математичні перетворення. Найбільшого поширення набули калібрування Кулона та калібрування Лоренца, але існують і застосовуються й інші калібрування. Na física de teorias de gauge, fixação de gauge ou fixação de calibre (também chamada escolha de um gauge) denota um procedimento matemático para a cópia com graus de liberdade redundantes em campos variáveis. Por definição, uma teoria de gauge representa fisicamente cada configuração distinta do sistema como uma classe equivalente de configurações de detalhadas. Qualquer duas configurações detalhadas na mesma classe equivalente são relacionadas por uma transformação de gauge, equivalente a uma transformação de simetria ao longo dos eixos geométricos (não físicos) no espaço de configuração. A maioria das predições físicas quantitativas de uma teoria de gauge podem somente ser obtidas sob uma coerente supressão ou ignorando estes graus de liberdade não físicos. Embora os eixos não físicos no espaço de configurações detalhadas sejam uma propriedade fundamental do modelo físico, não existe um conjunto especial de direções "perpendiculares" a eles. Desde que existe uma enorme quantidade de liberdade envolvida na tomada de uma "seção transversal" representando cada configuração física por uma configuração detalhada particular (ou mesmo de uma distribuição ponderada delas). Arbitrárias fixações de gauge podem simplificar cálculos imensamente, mas tornam-se progressivamente mais difíceis à medida que o modelo se torna mais realista; sua aplicação na teoria quântica de campos é trabalhosa com complicações relacionadas à renormalização, especialmente quando a computação é continuada a mais altas ordens. Historicamente, a busca por procedimentos de fixação de gauge logicamente consistentes e tratáveis computacionalmente, e esforços para demonstrar sua equivalência em face de uma confusa variedade de dificuldades técnicas, tem sido um principal condutor da física matemática do século XIX ao presente.
prov:wasDerivedFrom
wikipedia-en:Gauge_fixing?oldid=1114324842&ns=0
dbo:wikiPageLength
28122
foaf:isPrimaryTopicOf
wikipedia-en:Gauge_fixing