This HTML5 document contains 44 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n11https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n9https://www.elestor.nl/projects/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbpedia-nlhttp://nl.dbpedia.org/resource/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Hydrogen-bromine_battery
rdfs:label
Hydrogen-bromine battery Waterstofbromideflowbatterij
rdfs:comment
Een waterstofbromideflowbatterij is een flowbatterij met bromide en waterstof als reagentia. Vanwege de goedkope chemische elementen in de batterij, is het een voordeliger vorm van energie-opslag dan bij andere systemen. De batterij is ontwikkeld door Elestor BV en won in 2016 de Jan Terlouw Ambition Award 2016. In de jaren 60 voerde NASA al experimenten uit met dit type batterij, vanwege de plannen om een permanente basis op de maan in te richten. Toen dat niet doorging, is de ontwikkeling van de batterij stopgezet. A Hydrogen-bromine battery is a rechargeable flow battery in which hydrogen bromide (HBr) serves as the system’s electrolyte. During the charge cycle, as power flows into the stack, H2 is generated and stored in a separate tank. An additional product of the chemical reaction is HBr3, which is also an electrolyte and is mixed in the same tank as the HBr. During the discharge cycle H2 is consumed and energy is generated. The H2 is combined again with the HBr3 and the system returns to its initial stage with a full tank of HBr. The electrolyte suffers no degradation during the process and the system is self contained with no emissions.
dcterms:subject
dbc:Battery_types dbc:Rechargeable_batteries dbc:Flow_batteries
dbo:wikiPageID
41475766
dbo:wikiPageRevisionID
1120072591
dbo:wikiPageWikiLink
dbr:Anode dbr:Renewable_energy dbr:Flow_battery dbr:Hinnøya dbr:Laminar_flow dbc:Battery_types dbc:Rechargeable_batteries dbr:Hydrogen_bromide dbr:Power_density dbr:Bromine dbr:Wind_power dbr:Hydrobromic_acid dbr:Lithium dbr:Hydrogen dbr:Electrolyte dbr:Cobalt dbr:Cathode dbr:Solar_power dbr:AREVA dbr:Graphite dbc:Flow_batteries
dbo:wikiPageExternalLink
n9:
owl:sameAs
n11:ffAM wikidata:Q17045938 dbpedia-nl:Waterstofbromideflowbatterij
dbp:wikiPageUsesTemplate
dbt:When dbt:Cn dbt:Cite_journal dbt:Reflist dbt:Update-inline
dbo:abstract
A Hydrogen-bromine battery is a rechargeable flow battery in which hydrogen bromide (HBr) serves as the system’s electrolyte. During the charge cycle, as power flows into the stack, H2 is generated and stored in a separate tank. An additional product of the chemical reaction is HBr3, which is also an electrolyte and is mixed in the same tank as the HBr. During the discharge cycle H2 is consumed and energy is generated. The H2 is combined again with the HBr3 and the system returns to its initial stage with a full tank of HBr. The electrolyte suffers no degradation during the process and the system is self contained with no emissions. The first scaled up version of this battery, a 50KW/100KWh system, has been deployed in Rotem Industrial Park in Israel. A beta commercial system, sized at 150KW/900KWh, is to be deployed in June 2016 by a consortium including AREVA, Schneider Electric and EnStorage. The main advantage of the battery is its cost. Bromine is inexpensive, with more than 400,000 tons produced annually worldwide. The cost of the electrolyte is about $20/kWh. Additional advantages include the use on inexpensive membranes and high power density relative to other flow batteries. A different approach of the battery relies on laminar flow to separate the two materials instead of a membrane, reacting liquid bromine with hydrogen gas to generate electricity. The first such battery pumped bromine over a graphite cathode and hydrobromic acid under a porous anode, along with hydrogen gas. The device operated at room temperature with a maximum power density of 0.795 watts of per cubic centimeter. Observed performance matched the predictions of a mathematical model that described the chemical reactions. No membranless system has been scaled up, mainly due to balance of plant complexity matters. There is a European Union funded project under way which includes installation of hydrogen-bromine batteries in the Hinnøya island cluster. The project, launched in 2019, is a renewable energy system with multiple sources. It is due for delivery in 2021. Bromine is relatively inexpensive, with more than 243,000 tons produced annually in the U.S. Operation without a membrane reduces cost and increases battery lifetime. Een waterstofbromideflowbatterij is een flowbatterij met bromide en waterstof als reagentia. Vanwege de goedkope chemische elementen in de batterij, is het een voordeliger vorm van energie-opslag dan bij andere systemen. De batterij is ontwikkeld door Elestor BV en won in 2016 de Jan Terlouw Ambition Award 2016. In de jaren 60 voerde NASA al experimenten uit met dit type batterij, vanwege de plannen om een permanente basis op de maan in te richten. Toen dat niet doorging, is de ontwikkeling van de batterij stopgezet.
prov:wasDerivedFrom
wikipedia-en:Hydrogen-bromine_battery?oldid=1120072591&ns=0
dbo:wikiPageLength
6950
foaf:isPrimaryTopicOf
wikipedia-en:Hydrogen-bromine_battery