This HTML5 document contains 65 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n7http://faculty.tcu.edu/gfriedman/notes/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n9https://global.dbpedia.org/id/
n22https://webusers.imj-prg.fr/~fouad.elzein/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n21https://math.stackexchange.com/q/
n19http://people.mpim-bonn.mpg.de/geordie/perverse_course/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/
n16https://www.math.stonybrook.edu/~cschnell/pdf/notes/

Statements

Subject Item
dbr:Local_system
rdf:type
dbo:Organisation
rdfs:label
局部系統 Local system
rdfs:comment
In mathematics, a local system (or a system of local coefficients) on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943. The category of perverse sheaves on a manifold is equivalent to the category of local systems on the manifold. 在數學中,局部系統或稱局部係數是源於代數拓撲的一種觀念,它是常係數的同調或上同調理論的推廣。這個觀念也能應用於代數幾何 。 用層論的語言來講,局部系統是局部上同構於的阿貝爾群層。若此層整體來看也同構於常數層,則就回到了傳統的常係數理論。例子包括了帶有的向量叢,基本群的線性表示則給出了局部同構於向量空間常數層的局部系統。
dcterms:subject
dbc:Algebraic_topology dbc:Sheaf_theory
dbo:wikiPageID
3461103
dbo:wikiPageRevisionID
1112260682
dbo:wikiPageWikiLink
dbr:Twisted_Poincaré_duality dbr:Group_representation dbr:Gauss–Manin_connection dbr:Sheaf_of_modules dbr:Locally_constant_sheaf dbr:Homology_theory dbr:Connected_space dbr:Monodromy dbr:Curvature dbr:Topological_space dbr:Leray_spectral_sequence dbr:Constructible_sheaf dbr:Sheaf_cohomology dbr:D-modules dbr:D-module dbc:Algebraic_topology dbr:Fundamental_groups dbr:Abelian_group dbr:Constant_sheaf dbr:Norman_Steenrod dbr:Mathematics dbr:Intersection_homology dbr:Locally_simply_connected dbr:Poincaré_duality dbr:Algebraic_topology dbr:Module_over_a_ring dbc:Sheaf_theory dbr:Perverse_sheaf dbr:Covariant_functor dbr:Hodge_structure dbr:Universal_cover dbr:Stack_Exchange dbr:Orientation_covering
dbo:wikiPageExternalLink
n7:ih.pdf n16:locsys.pdf%7Ctitle= n19:lectures.pdf%7Ctitle= n21:13332%7Ctitle=What n22:elzein-snoussif.pdf%7Ctitle=
owl:sameAs
dbpedia-zh:局部系統 wikidata:Q6664565 n9:4qfvF freebase:m.09dpx4
dbp:wikiPageUsesTemplate
dbt:Cite_web dbt:Reflist dbt:More_citations_needed dbt:Clarify dbt:Short_description dbt:Math_proof
dbp:proof
Take local system and a loop at x. It's easy to show that any local system on is constant. For instance, is constant. This gives an isomorphism , i.e. between L and itself. Conversely, given a homomorphism , consider the constant sheaf on the universal cover of X. The deck-transform-invariant sections of gives a local system on X. Similarly, the deck-transform-ρ-equivariant sections give another local system on X: for a small enough open set U, it is defined as : where is the universal covering.
dbp:title
Proof of equivalence
dbo:abstract
In mathematics, a local system (or a system of local coefficients) on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943. The category of perverse sheaves on a manifold is equivalent to the category of local systems on the manifold. 在數學中,局部系統或稱局部係數是源於代數拓撲的一種觀念,它是常係數的同調或上同調理論的推廣。這個觀念也能應用於代數幾何 。 用層論的語言來講,局部系統是局部上同構於的阿貝爾群層。若此層整體來看也同構於常數層,則就回到了傳統的常係數理論。例子包括了帶有的向量叢,基本群的線性表示則給出了局部同構於向量空間常數層的局部系統。
gold:hypernym
dbr:Idea
prov:wasDerivedFrom
wikipedia-en:Local_system?oldid=1112260682&ns=0
dbo:wikiPageLength
11736
foaf:isPrimaryTopicOf
wikipedia-en:Local_system