This HTML5 document contains 50 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n10https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Maximum_score_estimator
rdfs:label
Maximum score estimator
rdfs:comment
In statistics and econometrics, the maximum score estimator is a nonparametric estimator for discrete choice models developed by Charles Manski in 1975. Unlike the multinomial probit and multinomial logit estimators, it makes no assumptions about the distribution of the unobservable part of utility. However, its statistical properties (particularly its asymptotic distribution) are more complicated than the multinomial probit and logit models, making statistical inference difficult. To address these issues, proposed a variant, called the smoothed maximum score estimator.
dct:subject
dbc:Categorical_regression_models dbc:Choice_modelling dbc:Estimator
dbo:wikiPageID
48681293
dbo:wikiPageRevisionID
1031116285
dbo:wikiPageWikiLink
dbr:Charles_Manski dbc:Estimator dbr:Smoothness dbr:Econometrics dbr:Asymptotic_distribution dbr:Independent_and_identically_distributed dbr:Multinomial_logit dbr:Multinomial_probit dbr:Multinomial_logit_model dbr:Probit_model dbr:Joel_Horowitz dbr:Kernel_function dbr:Parametric_estimation dbr:Statistical_estimation dbr:Binary_choice dbr:Errors_and_residuals dbr:Journal_of_Econometrics dbr:Statistics dbr:Utility_theory dbr:Parametric_model dbr:Probability_distribution dbr:Consistent_estimator dbr:Statistical_inference dbr:Likelihood_function dbr:Cumulative_distribution_function dbr:Gumbel_distribution dbr:Normal_distribution dbc:Choice_modelling dbr:Real_number dbr:Non-parametric_model dbr:Discrete_choice dbc:Categorical_regression_models dbr:Nonparametric
owl:sameAs
n10:2N5DB wikidata:Q25111844
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Technical dbt:Cite_journal dbt:Cite_book
dbo:abstract
In statistics and econometrics, the maximum score estimator is a nonparametric estimator for discrete choice models developed by Charles Manski in 1975. Unlike the multinomial probit and multinomial logit estimators, it makes no assumptions about the distribution of the unobservable part of utility. However, its statistical properties (particularly its asymptotic distribution) are more complicated than the multinomial probit and logit models, making statistical inference difficult. To address these issues, proposed a variant, called the smoothed maximum score estimator.
prov:wasDerivedFrom
wikipedia-en:Maximum_score_estimator?oldid=1031116285&ns=0
dbo:wikiPageLength
11246
foaf:isPrimaryTopicOf
wikipedia-en:Maximum_score_estimator