This HTML5 document contains 158 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n27http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
dbpedia-ukhttp://uk.dbpedia.org/resource/
n24https://doi.org/10.3390/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-plhttp://pl.dbpedia.org/resource/
dbpedia-pthttp://pt.dbpedia.org/resource/
n26http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
n29https://archive.org/details/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbpedia-frhttp://fr.dbpedia.org/resource/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Minkowski_functional
rdf:type
yago:Abstraction100002137 yago:Space100028651 yago:Attribute100024264 yago:WikicatTopologicalVectorSpaces
rdfs:label
Minkowski-Funktional 度規函數 Funzionale di Minkowski Funkcjonał Minkowskiego ミンコフスキー汎関数 Функціонал Мінковського Funcional de Minkowski Функционал Минковского Minkowski functional Fonctionnelle de Minkowski
rdfs:comment
Funkcjonał Minkowskiego – i dodatnio jednorodny funkcjonał związany z i wypukłymi podzbiorami przestrzeni liniowej. Em matemática, sobretudo na análise funcional, um funcional de Minkowski faz uma interpretação geométrica dos funcionais norma e semi-norma. Функционал Минковского — функционал, использующий линейную структуру пространства для введения топологии на нём. Назван по имени немецкого математика Германа Минковского. У функціональному аналізі функціонал Мінковського використовує лінійну структуру простору для введення топології на ньому. Названий на честь німецького математика Германа Мінковського. In mathematics, in the field of functional analysis, a Minkowski functional (after Hermann Minkowski) or gauge function is a function that recovers a notion of distance on a linear space. If is a subset of a real or complex vector space then the Minkowski functional or gauge of is defined to be the function valued in the extended real numbers, defined by In functional analysis, is usually assumed to have properties (such as being absorbing in for instance) that will guarantee that for every this set is not empty precisely because this results in being real-valued. En géométrie, la notion de jauge généralise celle de semi-norme. À toute partie C d'un ℝ-espace vectoriel E on associe sa jauge, ou fonctionnelle de Minkowski pC, qui est une application de E dans [0, +∞] mesurant, pour chaque vecteur, par quel rapport il faut dilater C pour englober ce vecteur. Dès que C contient l'origine, pC est positivement homogène ; si C est étoilée par rapport à 0, pC possède d'autres propriétés élémentaires. Si C est convexe — cas le plus souvent étudié — pC est même sous-linéaire, mais elle n'est pas nécessairement symétrique et elle peut prendre des valeurs infinies. Sous certaines hypothèses supplémentaires, pC est une semi-norme dont C est la boule unité. Im mathematischen Teilgebiet der Funktionalanalysis ist das Minkowski-Funktional (nach Hermann Minkowski), oft auch Eichfunktional genannt, eine Verallgemeinerung des Normbegriffes. In matematica, in particolare in analisi funzionale, un funzionale di Minkowski è una funzione che richiama il concetto di distanza tipico degli spazi vettoriali. 度規函數是數學的一個重要函數。設為或上的向量空間,有需要時可以假設為拓撲向量空間。設為在內的凸集,且包含原點。那麼的度規函數是從到的函數,定義為 , 如果為空集,定義。 從定義立刻得到以下結果,可以進一步說明度規函數: * 若是在中的開集,那麼; * 若是在中的閉集,那麼。 数学の関数解析学の分野におけるミンコフスキー汎関数(ミンコフスキーはんかんすう、英: Minkowski functional)とは、線型空間上に距離の概念をもたらすような関数のことである。 K を、線型空間 V に含まれる対称な凸体とする。V 上の関数 p を によって定める(ただしこの右辺が well-defined である場合)。
dbp:name
Proposition Corollary Theorem Summary
foaf:depiction
n26:Minkowski_functional.svg
dcterms:subject
dbc:Hermann_Minkowski dbc:Functional_analysis dbc:Convex_analysis
dbo:wikiPageID
3510908
dbo:wikiPageRevisionID
1108213796
dbo:wikiPageWikiLink
dbr:Functional_analysis dbr:Restriction_of_a_function dbr:Subadditive_function dbr:Linear_functionals dbr:Convex_analysis dbr:Balanced_set dbr:Locally_convex_topological_vector_space dbr:Convex_set dbr:Norm_(mathematics) dbr:Balanced_function dbr:Homogeneous_function dbr:Positive_homogeneity dbr:Seminorm dbr:Strict_positive_homogeneity dbr:Topological_interior dbr:Absorbing_set dbr:Infimum_and_supremum dbr:Nonnegative_homogeneity dbr:Absolutely_convex_set dbc:Hermann_Minkowski dbr:Absolute_homogeneity dbr:Complex_number dbr:Empty_set dbr:Star_domain dbc:Functional_analysis dbr:Mathematics dbc:Convex_analysis dbr:Vector_space dbr:Extended_real_number_line dbr:Topological_vector_space dbr:Cambridge_University_Press dbr:Locally_convex dbr:Sublinear_functional dbr:Sublinear_function dbr:Function_(mathematics) dbr:Algebraic_interior dbr:Null_space dbr:Hermann_Minkowski dbr:Real_number dbr:Infimum dbr:Closure_(topology) dbr:Positive_infinity n27:Minkowski_functional.svg dbr:Normed_vector_space dbr:Subadditive dbr:Hausdorff_space dbr:Linear_form
dbo:wikiPageExternalLink
n24:en13225976 n29:minkowskigeometr0000thom%7Curl-access=registration%7Cseries=Encyclopedia
owl:sameAs
dbpedia-fr:Fonctionnelle_de_Minkowski dbpedia-pt:Funcional_de_Minkowski dbpedia-ja:ミンコフスキー汎関数 dbpedia-de:Minkowski-Funktional dbpedia-pl:Funkcjonał_Minkowskiego n16:4pyRZ wikidata:Q649472 dbpedia-uk:Функціонал_Мінковського dbpedia-ru:Функционал_Минковского yago-res:Minkowski_functional freebase:m.09hhp2 dbpedia-it:Funzionale_di_Minkowski dbpedia-zh:度規函數
dbp:wikiPageUsesTemplate
dbt:Trèves_François_Topological_vector_spaces,_distributions_and_kernels dbt:Pietsch_Nuclear_Locally_Convex_Spaces dbt:Schechter_Handbook_of_Analysis_and_Its_Foundations dbt:Schaefer_Wolff_Topological_Vector_Spaces dbt:Conway_A_Course_in_Functional_Analysis dbt:Keller_Differential_Calculus_in_Locally_Convex_Spaces dbt:Cite_book dbt:Convex_analysis_and_variational_analysis dbt:Husain_Khaleelulla_Barrelledness_in_Topological_and_Ordered_Vector_Spaces dbt:Köthe_Topological_Vector_Spaces_I dbt:Köthe_Topological_Vector_Spaces_II dbt:Grothendieck_Topological_Vector_Spaces dbt:Dunford_Schwartz_Linear_Operators_Part_1_General_Theory dbt:Reflist dbt:Narici_Beckenstein_Topological_Vector_Spaces dbt:Swartz_An_Introduction_to_Functional_Analysis dbt:Berberian_Lectures_in_Functional_Analysis_and_Operator_Theory dbt:Hogbe-Nlend_Moscatelli_Nuclear_and_Conuclear_Spaces dbt:Annotated_link dbt:Wong_Schwartz_Spaces,_Nuclear_Spaces,_and_Tensor_Products dbt:Rudin_Walter_Functional_Analysis dbt:Hogbe-Nlend_Bornologies_and_Functional_Analysis dbt:Topological_vector_spaces dbt:Edwards_Functional_Analysis_Theory_and_Applications dbt:Collapse_bottom dbt:Collapse_top dbt:Functional_analysis dbt:Math_theorem dbt:Khaleelulla_Counterexamples_in_Topological_Vector_Spaces dbt:Wilansky_Modern_Methods_in_Topological_Vector_Spaces dbt:Dineen_Complex_Analysis_in_Locally_Convex_Spaces dbt:Sfn dbt:Diestel_The_Metric_Theory_of_Tensor_Products_Grothendieck's_Résumé_Revisited dbt:Jarchow_Locally_Convex_Spaces dbt:Robertson_Topological_Vector_Spaces dbt:Bourbaki_Topological_Vector_Spaces dbt:Em
dbo:thumbnail
n26:Minkowski_functional.svg?width=300
dbp:left
true
dbp:title
Proof Proof that the Gauge of an absorbing disk is a seminorm
dbo:abstract
Funkcjonał Minkowskiego – i dodatnio jednorodny funkcjonał związany z i wypukłymi podzbiorami przestrzeni liniowej. Im mathematischen Teilgebiet der Funktionalanalysis ist das Minkowski-Funktional (nach Hermann Minkowski), oft auch Eichfunktional genannt, eine Verallgemeinerung des Normbegriffes. У функціональному аналізі функціонал Мінковського використовує лінійну структуру простору для введення топології на ньому. Названий на честь німецького математика Германа Мінковського. Функционал Минковского — функционал, использующий линейную структуру пространства для введения топологии на нём. Назван по имени немецкого математика Германа Минковского. Em matemática, sobretudo na análise funcional, um funcional de Minkowski faz uma interpretação geométrica dos funcionais norma e semi-norma. 度規函數是數學的一個重要函數。設為或上的向量空間,有需要時可以假設為拓撲向量空間。設為在內的凸集,且包含原點。那麼的度規函數是從到的函數,定義為 , 如果為空集,定義。 從定義立刻得到以下結果,可以進一步說明度規函數: * 若是在中的開集,那麼; * 若是在中的閉集,那麼。 En géométrie, la notion de jauge généralise celle de semi-norme. À toute partie C d'un ℝ-espace vectoriel E on associe sa jauge, ou fonctionnelle de Minkowski pC, qui est une application de E dans [0, +∞] mesurant, pour chaque vecteur, par quel rapport il faut dilater C pour englober ce vecteur. Dès que C contient l'origine, pC est positivement homogène ; si C est étoilée par rapport à 0, pC possède d'autres propriétés élémentaires. Si C est convexe — cas le plus souvent étudié — pC est même sous-linéaire, mais elle n'est pas nécessairement symétrique et elle peut prendre des valeurs infinies. Sous certaines hypothèses supplémentaires, pC est une semi-norme dont C est la boule unité. Cette notion intervient en analyse fonctionnelle (démonstration de la forme analytique du théorème de Hahn-Banach), en optimisation (problème de recouvrement par jauge, optimisation conique), en apprentissage automatique, en géométrie des nombres (second théorème de Minkowski), etc. Dans tout cet article, E désigne un espace vectoriel réel, qu'on supposera topologique chaque fois que nécessaire. In mathematics, in the field of functional analysis, a Minkowski functional (after Hermann Minkowski) or gauge function is a function that recovers a notion of distance on a linear space. If is a subset of a real or complex vector space then the Minkowski functional or gauge of is defined to be the function valued in the extended real numbers, defined by where the infimum of the empty set is defined to be positive infinity (which is not a real number so that would then not be real-valued). The Minkowski function is always non-negative (meaning ) and is a real number if and only if is not empty. This property of being nonnegative stands in contrast to other classes of functions, such as sublinear functions and real linear functionals, that do allow negative values. In functional analysis, is usually assumed to have properties (such as being absorbing in for instance) that will guarantee that for every this set is not empty precisely because this results in being real-valued. Moreover, is also often assumed to have more properties, such as being an absorbing disk in since these properties guarantee that will be a (real-valued) seminorm on In fact, every seminorm on is equal to the Minkowski functional of any subset of satisfying (where all three of these sets are necessarily absorbing in and the first and last are also disks). Thus every seminorm (which is a function defined by purely algebraic properties) can be associated (non-uniquely) with an absorbing disk (which is a set with certain geometric properties) and conversely, every absorbing disk can be associated with its Minkowski functional (which will necessarily be a seminorm). These relationships between seminorms, Minkowski functionals, and absorbing disks is a major reason why Minkowski functionals are studied and used in functional analysis. In particular, through these relationships, Minkowski functionals allow one to "translate" certain geometric properties of a subset of into certain algebraic properties of a function on 数学の関数解析学の分野におけるミンコフスキー汎関数(ミンコフスキーはんかんすう、英: Minkowski functional)とは、線型空間上に距離の概念をもたらすような関数のことである。 K を、線型空間 V に含まれる対称な凸体とする。V 上の関数 p を によって定める(ただしこの右辺が well-defined である場合)。 In matematica, in particolare in analisi funzionale, un funzionale di Minkowski è una funzione che richiama il concetto di distanza tipico degli spazi vettoriali.
dbp:mathStatement
Let be any function. The following statements are equivalent: Strict positive homogeneity: for all and all real * This statement is equivalent to: for all and all positive real is a Minkowski functional; that is, there exists a subset such that where where Moreover, if never takes on the value then this list may be extended to include: Positive homogeneity/Nonnegative homogeneity: for all and all real Suppose that is a topological vector space over the real or complex numbers. Then the non-empty open convex subsets of are exactly those sets that are of the form for some and some positive continuous sublinear function on If is an absorbing disk in a vector space then the Minkowski functional of which is the map defined by is a seminorm on Moreover, Let be a subset of a real or complex vector space Then is a seminorm on if and only if all of the following conditions hold: ; is convex; * It suffices for to be convex. for all unit scalars * This condition is satisfied if is balanced or more generally if for all unit scalars in which case and both and will be convex, balanced, and absorbing subsets of Conversely, if is a seminorm on then the set satisfies all three of the above conditions and also moreover, is necessarily convex, balanced, absorbing, and satisfies If is a convex, balanced, and absorbing subset of a real or complex vector space then is a seminorm on Assume that is an absorbing subset of It is shown that: # If is convex then is subadditive. # If is balanced then is absolutely homogeneous; that is, for all scalars Let be any function and be any subset. The following statements are equivalent: is positive homogeneous, and is the Minkowski functional of , contains the origin, and is star-shaped at the origin. * The set is star-shaped at the origin if and only if whenever and A set that is star-shaped at the origin is sometimes called a . Suppose that is a subset of a real or complex vector space Strict positive homogeneity: for all and all real * Positive/Nonnegative homogeneity: is nonnegative homogeneous if and only if is real-valued. Real-values: is the set of all points on which is real valued. So is real-valued if and only if in which case * Value at : if and only if if and only if * Null space: If then if and only if if and only if there exists a divergent sequence of positive real numbers such that for all Moreover, Comparison to a constant: If then for any this can be restated as: If then * Thus if then where the set on the right hand side denotes and not its subset If then these sets are equal if and only if contains * In particular, if then but importantly, the converse is not necessarily true. Gauge comparison: For any subset thus if and only if * The set satisfies so replacing with will not change the resulting Minkowski functional. The same is true of and of * If then and has the particularly nice property that if is real then if and only if or Moreover, if is real then if and only if Subadditive/Triangle inequality: is subadditive if and only if is convex. If is convex then so are both and and moreover, is subadditive. Scaling the set: If is a scalar then for all Thus if is real then Absolute homogeneity: for all and all unit length scalars if and only if for all unit length scalars in which case for all and all scalars If in addition is also real-valued then this holds for scalars . * for all unit length if and only if for all unit length * for all unit scalars if and only if for all unit scalars if this is the case then for all unit scalars * is symmetric if and only if which happens if and only if * The Minkowski functional of any balanced set is a balanced function. Absorbing: If is convex balanced and if then is absorbing in * If a set is absorbing in and then is absorbing in * If is convex and then in which case Restriction to a vector subspace: If is a vector subspace of and if denotes the Minkowski functional of on then where denotes the restriction of to
prov:wasDerivedFrom
wikipedia-en:Minkowski_functional?oldid=1108213796&ns=0
dbo:wikiPageLength
41758
foaf:isPrimaryTopicOf
wikipedia-en:Minkowski_functional