This HTML5 document contains 384 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dahttp://da.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
wikipedia-enhttp://en.wikipedia.org/wiki/
dbrhttp://dbpedia.org/resource/
n22http://jsfiddle.net/jolumij/1qh7zav9/
dbpedia-frhttp://fr.dbpedia.org/resource/
n7http://commons.wikimedia.org/wiki/Special:FilePath/
dctermshttp://purl.org/dc/terms/
n9http://www.scipress.org/journals/forma/abstract/2403/
rdfshttp://www.w3.org/2000/01/rdf-schema#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n4http://dbpedia.org/resource/File:
dbphttp://dbpedia.org/property/
n27http://www.jaapsch.net/tilings/
xsdhhttp://www.w3.org/2001/XMLSchema#
dbohttp://dbpedia.org/ontology/
dbpedia-vihttp://vi.dbpedia.org/resource/
n39http://www.maa.org/programs/maa-awards/writing-awards/
n23https://www.theguardian.com/science/alexs-adventures-in-numberland/2015/aug/10/
dbchttp://dbpedia.org/resource/Category:
dbpedia-dehttp://de.dbpedia.org/resource/
n24https://core.ac.uk/download/pdf/
n35http://resolver.sub.uni-goettingen.de/
dbpedia-ruhttp://ru.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
yago-reshttp://yago-knowledge.org/resource/
n25https://global.dbpedia.org/id/
n29https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/
n28https://www.beloit.edu/computerscience/faculty/chavey/catalog/
n38https://perso.ens-lyon.fr/michael.rao/publi/
n10http://www.scipress.org/journals/forma/abstract/2701/
n31http://www.mathnet.ru/php/
n36http://www.mathpuzzle.com/
provhttp://www.w3.org/ns/prov#
foafhttp://xmlns.com/foaf/0.1/
dbpedia-zhhttp://zh.dbpedia.org/resource/
dbpedia-kohttp://ko.dbpedia.org/resource/
dbpedia-behttp://be.dbpedia.org/resource/
n21http://jsfiddle.net/jolumij/fzu3jw23/
n18https://archive.org/details/
dbpedia-eshttp://es.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
n8http://www.scipress.org/journals/forma/abstract/2001/
n16http://demonstrations.wolfram.com/PentagonTilings/
n5http://www.scipress.org/journals/forma/pdf/2501/
owlhttp://www.w3.org/2002/07/owl#

Statements

Subject Item
dbr:Pentagonal_tiling
rdfs:label
Teselado pentagonal 五邊形鑲嵌 오각형 테셀레이션 Pavage pentagonal Пятиугольный паркет Pentagonal tiling Parkettierung mit Fünfecken
rdfs:comment
Un pavage pentagonal est, en géométrie, un pavage du plan euclidien par des pentagones. Un pavage du plan uniquement avec des pentagones réguliers n'est pas possible, car l'angle interne du pentagone (108°) ne divise pas un tour complet (360°). En revanche, on peut considérer le dodécaèdre régulier comme un pavage de la sphère par des pentagones réguliers. On connait quinze types de pavages pentagonaux, c'est-à-dire employant un même type de tuile pentagonale convexe. Michaël Rao annonce en 2017 que la liste est complète, sa preuve est en cours de vérification. 기하학에서 오각형 테셀레이션 또는 오각형 타일링(五角形-, 영어: pentagonal tiling)은 오각형으로 평면을 채우는 테셀레이션이다. 정오각형의 내각은 108°로, 360°를 나누지 못하기 때문에 유클리드 평면을 정오각형으로 채우는 것은 불가능하다. 그러나 쌍곡공간과 구 위에서는 정오각형 타일링이 가능하며, 특히 구 위에서의 정오각형 타일링은 정십이면체와 위상적으로 동일하다. 在幾何學中,五邊形鑲嵌是指用五邊形鑲嵌平面。 正五邊形不能鑲嵌平面,因為其內角是108°,不能整除360°。截至2015年,已知有15种凸五边形鑲嵌平面。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在上述的15种凸五边形鑲嵌平面情况。 In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon. A regular pentagonal tiling on the Euclidean plane is impossible because the internal angle of a regular pentagon, 108°, is not a divisor of 360°, the angle measure of a whole turn. However, regular pentagons can tile the hyperbolic plane with four pentagons around each vertex (or more) and sphere with three pentagons; the latter produces a tiling topologically equivalent to the dodecahedron. Die Parkettierung mit Fünfecken (auch Kachelung/Pflasterung/Flächenschluss mit Pentagonen) ist eine lückenlose, überlappungsfreie geometrische und monohedrale Parkettierung, bei der alle Elemente (Kacheln) kongruent (deckungsgleich) zueinander und von der Form eines und desselben Fünfecks sind. Пятиугольный паркет — в геометрии: замощение, составленное из выпуклых пятиугольников. Замощение из правильных пятиугольников в евклидовом пространстве невозможно, поскольку общий угол правильного пятиугольника равен 108° и не делит ни 180°, ни 360°. Однако ими можно гиперболическую плоскость и сферу. Для плоскости же задача о полном описании всех возможных замощений неправильными пятиугольниками (описания всех видов пятиугольников, для которых возможно такое замощение) является очень сложной и исследования по ней ведутся больше века. En geometría, un teselado pentagonal es un tipo de recubrimiento del plano en el que cada pieza individual tiene la forma de un pentágono. Los recubrimientos a base de piezas pentagonales convexas del mismo tamaño (los denominados teselados pentagonales monoedrales convexos) se convirtieron en objeto de investigación geométrica a comienzos del siglo XX. Han producido sorprendentes resultados a lo largo de más de cien años, involucrando tanto a matemáticos profesionales como a matemáticos aficionados (entre los que destaca la singular historia de Marjorie Rice) a través de los artículos de Martin Gardner en la revista Scientific American. En este período, se han ido descubriendo quince tipos de teselados pentagonales monoedrales convexos distintos, estando pendiente a finales del año 2017 l
foaf:depiction
n7:Prototile_p5-type11.png n7:Prototile_p5-type12.png n7:Prototile_p5-type13.png n7:Prototile_p5-type9.png n7:Uniform_tiling_532-t0.png n7:1_uniform_9_dual_color1.png n7:P5-type11_chiral_coloring.png n7:P5-type12-chiral_coloring.png n7:P5-type13-chiral_coloring.png n7:P5-type9-chiral_coloring.png n7:2-uniform_16_dual_color2.png n7:2-uniform_17_dual_color2.png n7:7-3_floret_pentagonal_tiling.svg n7:Pentagonal_tiling_type_4_animation.gif n7:Pentagonal_tiling_type_5_animation.gif n7:Pentagonal_tiling_type_6_animation.gif n7:Pentagonal_tiling_type_7_animation.gif n7:Pentagonal_tiling_type_8_animation.gif n7:Pentagonal_tiling_type_9_animation.gif n7:Pentagonal_tiling_with_5-fold_rotational_symmetry.svg n7:Pentagonal_tiling_with_7-fold_rotational_symmetry.svg n7:Type_15_pentagonal_tiling_(large).png n7:H2-5-4-floret.svg n7:H2-8-3-floret.svg n7:H2-5-4-dual.svg n7:3-uniform_53_dual_color3.png n7:3-uniform_55_dual_color3.png n7:1-uniform_10_dual_color1.png n7:3-uniform_56_dual_color3.png n7:1-uniform_8_dual_color1.png n7:Lattice_p5-type2b.png n7:P5-type2b_p2.png n7:P5-type4.png n7:Lattice_p5-type4.png n7:Uniform_tiling_55-t0.png n7:Uniform_tiling_56-t0.png n7:Uniform_tiling_57-t0.png n7:Hirschhorn_6-fold-rotational_symmetry_pentagonal_tiling.svg n7:Uniform_tiling_58-t0.png n7:33336_tiling_face_yellow.png n7:33344_tiling_face_purple.png n7:33434_tiling_face_green.png n7:Prototile_p5-type5.png n7:Prototile_p5-type6.png n7:P5-type1.png n7:P5-type3.png n7:5-uniform_311_dual_color5.png n7:5-uniform_312_dual_color5.png n7:5-uniform_314_dual_color5.png n7:5-uniform_315_dual_color5.png n7:Prototile_p5-type1.png n7:Prototile_p5-type10.png n7:Prototile_p5-type10_cmm.png n7:Prototile_p5-type14.png n7:Prototile_p5-type15.png n7:Prototile_p5-type2.png n7:Prototile_p5-type3.png n7:Prototile_p5-type4.png n7:Prototile_p5-type6_parallel.png n7:Prototile_p5-type7.png n7:Prototile_p5-type8.png n7:Pent-Hex-Type1-2.png n7:Pent-Hex-Type3-3.png n7:Binary_tiling_straight.svg n7:4-uniform_142_dual_color4.png n7:Pent-Hex-Type3-9.png n7:Monohedral_pentagonal_tiling_labels.png n7:4-uniform_143_dual_color4.png n7:Pent-Hex-Type4-4.png n7:4-uniform_144_dual_color4.png n7:P5-type10.png n7:P5-type10_cmm.png n7:P5-type14.png n7:P5-type1_1u.png n7:P5-type1_1u_90.png n7:5-uniform_303_dual_color5.png n7:P5-type1_p2.png n7:5-uniform_309_dual_color5.png n7:P5-type1_p4g.png n7:5-uniform_310_dual_color5.png n7:P5-type1_pgg-chiral_coloring.png n7:Lattice-p5-type1_pgg.png n7:P5-type1_pm.png n7:Lattice_p5-type1.png n7:P5-type2-chiral_coloring.png n7:Lattice_p5-type10.png n7:Lattice_p5-type11.png n7:P5-type3_p3m1.png n7:Lattice_p5-type12.png n7:P5-type4_p4g.png n7:Lattice_p5-type13.png n7:P5-type5_p6m.png n7:Lattice_p5-type14.png n7:P5-type5_rice_p6.png n7:Lattice_p5-type15.png n7:P5-type6_parallel.png n7:Lattice_p5-type1_1u.png n7:P5-type7-chiral_coloring.png n7:Lattice_p5-type1_cm.png n7:P5-type8-chiral_coloring.png n7:Lattice_p5-type1_pmg.png n7:P5-type15-chiral_coloring.png n7:Lattice_p5-type2.png n7:Lattice_p5-type3.png n7:Lattice_p5-type5.png n7:Lattice_p5-type5_rice_p6.png n7:Lattice_p5-type6.png n7:Lattice_p5-type6_parallel.png n7:Lattice_p5-type7.png n7:Lattice_p5-type8.png n7:Lattice_p5-type9.png n7:P5-type5.png n7:P5-type6.png n7:Sphinx_tiling_pg_a.svg n7:Pentagonal_Tessellation_of_Hexagons.png n7:Pentagonal_tiling_type_10_animation.gif n7:Pentagonal_tiling_type_11_animation.gif n7:Pentagonal_tiling_type_12_animation.gif n7:Pentagonal_tiling_type_13_animation.gif
dcterms:subject
dbc:Tessellation dbc:Pentagonal_tilings
dbo:wikiPageID
4850275
dbo:wikiPageRevisionID
1122167358
dbo:wikiPageWikiLink
n4:Lattice_p5-type11.png n4:Lattice_p5-type12.png n4:Lattice_p5-type13.png n4:Lattice_p5-type14.png n4:Lattice_p5-type15.png n4:Lattice_p5-type1_1u.png n4:Lattice_p5-type1_cm.png n4:Lattice_p5-type1_pmg.png dbr:Laves_tiling n4:Lattice_p5-type2.png n4:Lattice_p5-type2b.png dbr:Cairo_pentagonal_tiling dbr:Marjorie_Rice n4:Lattice_p5-type3.png n4:Lattice_p5-type4.png n4:Lattice_p5-type5.png n4:Lattice_p5-type5_rice_p6.png n4:Lattice_p5-type6.png n4:Lattice_p5-type6_parallel.png n4:Lattice_p5-type7.png dbr:Dual_(polyhedron) n4:Lattice_p5-type8.png n4:Lattice_p5-type9.png dbr:Order-6_pentagonal_tiling dbr:Aperiodic_tiling dbr:Mathematics_Magazine dbr:Parallelogram dbr:Square dbr:Hyperbolic_plane dbr:Tiling_of_the_plane dbr:Floret_pentagonal_tiling n4:Hirschhorn_6-fold-rotational_symmetry_pentagonal_tiling.svg dbr:Order-7_pentagonal_tiling n4:Uniform_tiling_532-t0.png dbr:Matematicheskii_Sbornik dbr:École_normale_supérieure_de_Lyon dbr:Quanta_Magazine dbr:Tessellation n4:P5-type1_1u.png dbr:Martin_Gardner n4:P5-type1_1u_90.png n4:P5-type1_p2.png n4:P5-type1_p4g.png n4:P5-type1_pgg-chiral_coloring.png n4:P5-type1_pm.png n4:P5-type2-chiral_coloring.png n4:P5-type2b_p2.png n4:P5-type3_p3m1.png n4:P5-type4.png n4:P5-type4_p4g.png n4:P5-type5.png n4:P5-type5_p6m.png n4:P5-type5_rice_p6.png n4:P5-type6_parallel.png n4:P5-type7-chiral_coloring.png n4:P5-type8-chiral_coloring.png dbr:K-uniform_tiling n4:Uniform_tiling_58-t0.png n4:Prototile_p5-type6.png dbr:Sphinx_tiling dbr:University_of_Washington_Bothell dbr:Chirality_(mathematics) n4:P5-type10.png n4:P5-type6.png n4:P5-type10_cmm.png n4:P5-type14.png n4:P5-type15-chiral_coloring.png dbr:Wallpaper_group dbr:Hyperbolic_geometry n4:Monohedral_pentagonal_tiling_labels.png n4:Uniform_tiling_55-t0.png n4:Uniform_tiling_56-t0.png n4:Uniform_tiling_57-t0.png dbr:Prismatic_pentagonal_tiling n4:P5-type11_chiral_coloring.png n4:P5-type12-chiral_coloring.png n4:P5-type13-chiral_coloring.png n4:P5-type9-chiral_coloring.png dbr:Spherical_dodecahedron dbr:Sphere dbr:Pentagon n4:Prototile_p5-type11.png dbr:Michaël_Rao n4:Prototile_p5-type12.png dbr:Monohedral_tiling n4:Prototile_p5-type13.png dbr:Uniform_tilings_in_hyperbolic_plane n4:Prototile_p5-type9.png dbr:Obtuse_angle dbr:Computer_algorithm n4:Pentagonal_tiling_type_10_animation.gif n4:Pentagonal_tiling_type_11_animation.gif n4:Pentagonal_tiling_type_12_animation.gif n4:Pentagonal_tiling_type_13_animation.gif n4:Pentagonal_tiling_type_4_animation.gif n4:Pentagonal_tiling_type_5_animation.gif n4:Pentagonal_tiling_type_6_animation.gif n4:Pentagonal_tiling_type_7_animation.gif n4:Pentagonal_tiling_type_8_animation.gif n4:Pentagonal_tiling_type_9_animation.gif n4:Pentagonal_tiling_with_5-fold_rotational_symmetry.svg n4:Pentagonal_tiling_with_7-fold_rotational_symmetry.svg dbr:Equilateral_triangle dbr:Order-3_snub_heptagonal_tiling dbr:Isogonal_figure dbr:Regular_dodecahedron dbr:Rep-tile dbr:Regular_hexagon dbr:Geometry dbr:Isohedral_figure dbr:Order-8_pentagonal_tiling n4:1-uniform_8_dual_color1.png n4:Pentagonal_Tessellation_of_Hexagons.png n4:1_uniform_9_dual_color1.png n4:2-uniform_16_dual_color2.png n4:2-uniform_17_dual_color2.png dbr:Order-4_pentagonal_tiling dbr:Binary_tiling dbr:Rotational_symmetry n4:7-3_floret_pentagonal_tiling.svg n4:Binary_tiling_straight.svg dbr:Dodecahedron dbr:Internal_angle dbr:Regular_tiling n4:Pent-Hex-Type1-2.png n4:1-uniform_10_dual_color1.png n4:Pent-Hex-Type3-3.png dbr:Group_action_(mathematics) n4:Pent-Hex-Type3-9.png n4:Pent-Hex-Type4-4.png dbr:Uniform_tiling dbc:Tessellation n4:3-uniform_53_dual_color3.png n4:3-uniform_55_dual_color3.png dbr:Mathematical_Games_(column) n4:3-uniform_56_dual_color3.png n4:33336_tiling_face_yellow.png dbr:Primitive_unit n4:33344_tiling_face_purple.png n4:33434_tiling_face_green.png n4:4-uniform_142_dual_color4.png n4:4-uniform_143_dual_color4.png n4:4-uniform_144_dual_color4.png n4:5-uniform_303_dual_color5.png n4:5-uniform_309_dual_color5.png n4:5-uniform_310_dual_color5.png n4:H2-5-4-dual.svg n4:5-uniform_311_dual_color5.png n4:P5-type1.png n4:5-uniform_312_dual_color5.png n4:P5-type3.png n4:5-uniform_314_dual_color5.png n4:5-uniform_315_dual_color5.png dbr:American_Mathematical_Monthly n4:H2-5-4-floret.svg n4:H2-8-3-floret.svg n4:Prototile_p5-type1.png n4:Prototile_p5-type10.png n4:Prototile_p5-type10_cmm.png n4:Prototile_p5-type14.png n4:Prototile_p5-type15.png dbr:Casey_Mann n4:Prototile_p5-type2.png n4:Prototile_p5-type3.png n4:Prototile_p5-type4.png n4:Prototile_p5-type5.png n4:Prototile_p5-type6_parallel.png n4:Prototile_p5-type7.png n4:Prototile_p5-type8.png dbr:Isohedral dbr:Turn_(geometry) dbr:Convex_polygon dbc:Pentagonal_tilings dbr:Euclidean_plane dbr:Scientific_American dbr:Automorphism_group dbr:Jennifer_McLoud-Mann dbr:Orbifold_notation dbr:Order-5_pentagonal_tiling dbr:Face_configuration dbr:Schläfli_symbol dbr:Pentagonal n4:Type_15_pentagonal_tiling_(large).png n4:Sphinx_tiling_pg_a.svg dbr:The_Guardian n4:Lattice-p5-type1_pgg.png n4:Lattice_p5-type1.png n4:Lattice_p5-type10.png
dbo:wikiPageExternalLink
n5:25010049.pdf n8:20010001.html n9:24030093.html n10:27010093.html n16: n18:isbn_0716711931 n21: n22: n23:attack-on-the-pentagon-results-in-discovery-of-new-mathematical-tile n24:82754854.pdf n27:%23pentagon n28: n29: n31:seminars.phtml%3Fpresentid=4640 n35:purl%3FPPN316479497 n36:tilepent.html n38:penta.pdf n39:tiling-the-plane-with-congruent-pentagons
owl:sameAs
dbpedia-be:Пяцівугольны_паркет dbpedia-ko:오각형_테셀레이션 dbpedia-ru:Пятиугольный_паркет n25:3762Y dbpedia-de:Parkettierung_mit_Fünfecken dbpedia-es:Teselado_pentagonal yago-res:Pentagonal_tiling freebase:m.02p8n6y dbpedia-zh:五邊形鑲嵌 wikidata:Q3372904 dbpedia-fr:Pavage_pentagonal dbpedia-vi:Hình_ghép_5_góc dbpedia-da:Pentagonal_tessellation
dbp:wikiPageUsesTemplate
dbt:Radic dbt:Tessellation dbt:Reflist dbt:Refend dbt:Refbegin dbt:Pi dbt:Math dbt:MathWorld dbt:Commons_category dbt:Sfrac dbt:Sfn dbt:MR dbt:Harvtxt dbt:Citation
dbo:thumbnail
n7:P5-type15-chiral_coloring.png?width=300
dbp:title
Pentagon Tiling
dbp:urlname
PentagonTiling
dbp:mode
cs2
dbo:abstract
Пятиугольный паркет — в геометрии: замощение, составленное из выпуклых пятиугольников. Замощение из правильных пятиугольников в евклидовом пространстве невозможно, поскольку общий угол правильного пятиугольника равен 108° и не делит ни 180°, ни 360°. Однако ими можно гиперболическую плоскость и сферу. Для плоскости же задача о полном описании всех возможных замощений неправильными пятиугольниками (описания всех видов пятиугольников, для которых возможно такое замощение) является очень сложной и исследования по ней ведутся больше века. Die Parkettierung mit Fünfecken (auch Kachelung/Pflasterung/Flächenschluss mit Pentagonen) ist eine lückenlose, überlappungsfreie geometrische und monohedrale Parkettierung, bei der alle Elemente (Kacheln) kongruent (deckungsgleich) zueinander und von der Form eines und desselben Fünfecks sind. Der Fall der ebenen Parkettierung mit kongruenten (deckungsgleichen), konvexen Fünfecken ist deshalb besonders interessant, weil die in Frage kommenden Formen (Typen) seit einem Jahrhundert untersucht werden, diese nicht abschließend klassifiziert sind und 5 der derzeit bekannten 15 verschiedenen Typen von der Amateur-Mathematikerin und einem Informatiker gefunden wurden, die durch Artikel von Martin Gardner in der populärwissenschaftlichen Zeitschrift Scientific American zu ihren Nachforschungen inspiriert worden waren. 기하학에서 오각형 테셀레이션 또는 오각형 타일링(五角形-, 영어: pentagonal tiling)은 오각형으로 평면을 채우는 테셀레이션이다. 정오각형의 내각은 108°로, 360°를 나누지 못하기 때문에 유클리드 평면을 정오각형으로 채우는 것은 불가능하다. 그러나 쌍곡공간과 구 위에서는 정오각형 타일링이 가능하며, 특히 구 위에서의 정오각형 타일링은 정십이면체와 위상적으로 동일하다. En geometría, un teselado pentagonal es un tipo de recubrimiento del plano en el que cada pieza individual tiene la forma de un pentágono. Los recubrimientos a base de piezas pentagonales convexas del mismo tamaño (los denominados teselados pentagonales monoedrales convexos) se convirtieron en objeto de investigación geométrica a comienzos del siglo XX. Han producido sorprendentes resultados a lo largo de más de cien años, involucrando tanto a matemáticos profesionales como a matemáticos aficionados (entre los que destaca la singular historia de Marjorie Rice) a través de los artículos de Martin Gardner en la revista Scientific American. En este período, se han ido descubriendo quince tipos de teselados pentagonales monoedrales convexos distintos, estando pendiente a finales del año 2017 la confirmación definitiva de la demostración formulada por el matemático francés , de que no es posible que exista ningún otro tipo más. Un teselado regular pentagonal en el plano euclidiano es imposible, porque el ángulo interno de un pentágono regular, 108°, no es un divisor de 360°, la medida angular de un círculo completo. A pesar de ello, los pentágonos regulares pueden recubrir tanto una superficie hiperbólica como una esfera. In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon. A regular pentagonal tiling on the Euclidean plane is impossible because the internal angle of a regular pentagon, 108°, is not a divisor of 360°, the angle measure of a whole turn. However, regular pentagons can tile the hyperbolic plane with four pentagons around each vertex (or more) and sphere with three pentagons; the latter produces a tiling topologically equivalent to the dodecahedron. 在幾何學中,五邊形鑲嵌是指用五邊形鑲嵌平面。 正五邊形不能鑲嵌平面,因為其內角是108°,不能整除360°。截至2015年,已知有15种凸五边形鑲嵌平面。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在上述的15种凸五边形鑲嵌平面情况。 Un pavage pentagonal est, en géométrie, un pavage du plan euclidien par des pentagones. Un pavage du plan uniquement avec des pentagones réguliers n'est pas possible, car l'angle interne du pentagone (108°) ne divise pas un tour complet (360°). En revanche, on peut considérer le dodécaèdre régulier comme un pavage de la sphère par des pentagones réguliers. On connait quinze types de pavages pentagonaux, c'est-à-dire employant un même type de tuile pentagonale convexe. Michaël Rao annonce en 2017 que la liste est complète, sa preuve est en cours de vérification.
prov:wasDerivedFrom
wikipedia-en:Pentagonal_tiling?oldid=1122167358&ns=0
dbo:wikiPageLength
37224
foaf:isPrimaryTopicOf
wikipedia-en:Pentagonal_tiling