This HTML5 document contains 220 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n6http://dbpedia.org/resource/File:
n20https://global.dbpedia.org/id/
dbpedia-ruhttp://ru.dbpedia.org/resource/
dbthttp://dbpedia.org/resource/Template:
skoshttp://www.w3.org/2004/02/skos/core#
dbpedia-ukhttp://uk.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n19https://www.graphene-info.com/
n12https://vorbeck.com/pages/
n11http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
n8http://www.springernature.com/scigraph/things/subjects/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Potential_applications_of_graphene
rdf:type
owl:Thing
rdfs:label
Потенційне застосування графену Применение графена Potential applications of graphene
rdfs:comment
Графен є двовимірною алотропною формою вуглецю. Його атоми об'єднані в гексагональну кристалічну ґратку. Ними утворюється шар, товщина якого — один атом. Відкрили цю речовину Андрій Гейм та Костянтин Новосьолов у 2004 році, а у 2010 році ці вчені отримали Нобелівську премію з фізики. Применение графена находится на начальной стадии научно-исследовательских разработок и исследований. В перспективе графеновая электроника рассматривается как основное применение графена. Отсутствие запрещённой зоны позволяет рассматривать графен как идеальный материал для детектирования инфракрасного света и терагерцового излучения. Potential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials. In 2013, the European Union made a €1 billion grant to be used for research into potential graphene applications. In 2013 the Graphene Flagship consortium formed, including Chalmers University of Technology and seven other European universities and research centers, along with Nokia.
rdfs:seeAlso
dbr:Copper-clad_aluminium_wire
foaf:depiction
n11:GrapheneE2.png
dcterms:subject
dbc:Graphene
dbo:wikiPageID
42482555
dbo:wikiPageRevisionID
1123601751
dbo:wikiPageWikiLink
dbr:Antibodies dbr:Crystallography dbr:Contrast_agent dbr:Lorentz_force dbr:Logic_gates dbr:Thermal_interfacial_materials dbr:Vodka dbr:Optoelectronic dbr:Carbon_fiber dbr:DNA dbr:Corrosion_resistance dbr:Receptor_(biochemistry) n6:GrapheneE2.png dbr:Silica dbr:RFID dbr:A549_cell dbr:Silicon_carbide dbr:Organic_solvents dbr:Quantum_confinement dbr:Ampacity dbr:Piezoelectricity dbr:Adatom dbr:Electron_spin dbr:Poly(3,4-ethylenedioxythiophene) dbr:Μm dbr:Concrete dbr:Hertz dbr:Titanium_oxide dbr:Polymer dbr:Surface-area-to-mass_ratio dbr:Carrier_mobility dbr:Nanoelectromechanical_systems dbr:Chemical_vapour_deposition dbr:Density_of_states dbr:Newton's_rings dbr:Enzymes dbr:Chemical_reactions dbr:Density_functional_theory dbr:Osteogenic dbr:CT_scan dbr:Polyurethane dbr:Graphene_nanoribbons dbr:Current_transformer dbr:Quantum_Hall_effect dbr:Graphene_applications_as_optical_lenses dbr:Surface_plasmon_polaritons dbr:Adsorption dbr:Sorption dbr:Polythiophene dbr:Polymerase_chain_reaction dbr:Graphene_nanoribbon dbr:Graphene_oxide dbr:Electromigration dbr:Nokia dbr:Graphene_foam dbr:Frequency_multiplier dbr:Oxidation dbr:Field-effect_transistor dbr:Graphene dbr:Amphiphilic dbr:Boron_nitride dbr:Desalination dbr:Lithium-ion_battery dbr:Poly(3-hexylthiophene) dbr:Touchscreen dbr:Nanowire_battery dbr:Spintronics dbr:Condom dbr:Phonon dbr:MRI dbr:Dielectric dbr:Near_field_infrared_optical_microscopy dbr:Pyrene dbr:Supercapacitors dbr:Photoacoustic_tomography dbr:Hafnium(IV)_oxide dbr:Biodegradability dbr:Copper_wire dbr:Carbon–carbon_bond dbr:Light-emitting_electrochemical_cell dbr:Molybdenum_disulfide dbr:Capacitance dbr:Anode dbc:Graphene dbr:Joule_heating dbr:TIMs dbr:Substrate_(chemistry) dbr:Perovskite dbr:Hughes_Research_Laboratories dbr:Heat_dissipation dbr:Scanning_tunneling_microscopy dbr:Rhombohedral dbr:Manganese_dioxide dbr:Mesoscopic dbr:Cadmium dbr:Silicon dbr:Conductive_polymer dbr:Aerogel dbr:Iodine dbr:Supercapacitor dbr:Plasmon dbr:Methane dbr:Graphite dbr:Wireless_network dbr:Contact_lens dbr:Polariton dbr:Pyrylium dbr:Diels-Alder_reaction dbr:Doxorubicin dbr:Frequency_response dbr:Distillation dbr:Epoxy dbr:Band_gap dbr:Interfacial_thermal_resistance dbr:Hall_effect dbr:Manganese dbr:Arsenate dbr:Conductivity_of_transparency dbr:Huawei dbr:Proton dbr:Random-access_memory dbr:Van_Hove_singularity dbr:MIT_Lincoln_Lab dbr:MnO2 dbr:Energy_density dbr:Silane dbr:Platinum dbr:Indium_tin_oxide dbr:Organic_photovoltaics dbr:Carbon_nanotube dbr:Wetting dbr:University_of_Western_Australia dbr:Activation_energy dbr:Sheet_resistance dbr:Superlens dbr:Chalmers_University_of_Technology dbr:8-Oxo-2'-deoxyguanosine dbr:DNA_sequencing dbr:Aluminum_oxide dbr:Monash_University dbr:Soliton dbr:Fabry–Perot_resonator dbr:Peptide dbr:Cathode dbr:Mobile_phone dbr:Photovoltaic dbr:Argon-ion dbr:Hall_effect_sensors dbr:Grotthuss_mechanism dbr:Thermal_conductivity dbr:Fermi_level dbr:Mesenchymal_stem_cell dbr:Thermoplastic dbr:Certified_reference_materials dbr:TRAIL dbr:Boric_acid dbr:Transparency_and_translucency dbr:Solar_cell dbr:Biosensor dbr:Apoptosis dbr:Additive_manufacturing dbr:Smart_dust dbr:Endoscopy dbr:Inverter_(logic_gate) dbr:Nanophotonic dbr:Liquid_crystal_display dbr:Electrical_resistivity_and_conductivity dbr:Seebeck_effect dbr:Quantum_tunneling dbr:Colloid dbr:Bill_&_Melinda_Gates_Foundation dbr:Electrical_resistance dbr:Quantum_dot dbr:Toxin dbr:Aromaticity dbr:Organic_light-emitting_diode dbr:Silly_putty dbr:Qualcomm_Toq dbr:Chemical_vapor_deposition dbr:Mechanical_strength dbr:Lubricant dbr:Nickel
dbo:wikiPageExternalLink
n12:products-rfid n19:new-security-tags-built-using-vorbecks-graphene-based-inks-start-shipping-q1-2012
owl:sameAs
dbpedia-ru:Применение_графена n20:gMyL dbpedia-uk:Потенційне_застосування_графену wikidata:Q17166010
dbp:wikiPageUsesTemplate
dbt:Clarify dbt:Further dbt:Toclimit dbt:Reflist dbt:Val dbt:Chem dbt:Use_mdy_dates dbt:See_also dbt:Dubious dbt:Update dbt:Convert dbt:Citation_needed
dbo:thumbnail
n11:GrapheneE2.png?width=300
dbo:abstract
Potential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials. In 2008, graphene produced by exfoliation was one of the most expensive materials on Earth, with a sample the area of a cross section of a human hair costing more than $1,000 as of April 2008 (about $100,000,000/cm2). Since then, exfoliation procedures have been scaled up, and now companies sell graphene in large quantities. The price of epitaxial graphene on silicon carbide is dominated by the substrate price, which was approximately $100/cm2 as of 2009. There is now a new method of making graphene out of gum trees that can lower the cost to up to $0.50 per gram as of 2019. Hong and his team in South Korea pioneered the synthesis of large-scale graphene films using chemical vapour deposition (CVD) on thin nickel layers, which triggered research on practical applications, with wafer sizes up to 760 millimetres (30 in) reported. By 2017, graphene electronics were being manufactured in a commercial fab on a 200 mm line. In 2013, the European Union made a €1 billion grant to be used for research into potential graphene applications. In 2013 the Graphene Flagship consortium formed, including Chalmers University of Technology and seven other European universities and research centers, along with Nokia. Графен є двовимірною алотропною формою вуглецю. Його атоми об'єднані в гексагональну кристалічну ґратку. Ними утворюється шар, товщина якого — один атом. Відкрили цю речовину Андрій Гейм та Костянтин Новосьолов у 2004 році, а у 2010 році ці вчені отримали Нобелівську премію з фізики. Применение графена находится на начальной стадии научно-исследовательских разработок и исследований. В перспективе графеновая электроника рассматривается как основное применение графена. Отсутствие запрещённой зоны позволяет рассматривать графен как идеальный материал для детектирования инфракрасного света и терагерцового излучения.
skos:broadMatch
n8:optical-properties-and-devices
prov:wasDerivedFrom
wikipedia-en:Potential_applications_of_graphene?oldid=1123601751&ns=0
dbo:wikiPageLength
136955
foaf:isPrimaryTopicOf
wikipedia-en:Potential_applications_of_graphene