This HTML5 document contains 571 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
n27https://global.dbpedia.org/id/
dbpedia-ithttp://it.dbpedia.org/resource/
dbpedia-eshttp://es.dbpedia.org/resource/
provhttp://www.w3.org/ns/prov#
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n22http://www.learner.org/resources/
wikidatahttp://www.wikidata.org/entity/
schemahttp://schema.org/
dbthttp://dbpedia.org/resource/Template:
n10http://
yagohttp://dbpedia.org/class/yago/
owlhttp://www.w3.org/2002/07/owl#
dbchttp://dbpedia.org/resource/Category:
n21http://www.its.caltech.edu/~tmu/
dbohttp://dbpedia.org/ontology/
wikipedia-enhttp://en.wikipedia.org/wiki/
n11http://dbpedia.org/resource/Annenberg/
dctermshttp://purl.org/dc/terms/
dbphttp://dbpedia.org/property/
n26http://dbpedia.org/ontology/Work/
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbrhttp://dbpedia.org/resource/
foafhttp://xmlns.com/foaf/0.1/
yago-reshttp://yago-knowledge.org/resource/
n13http://dbpedia.org/resource/Cosmos:
freebasehttp://rdf.freebase.com/ns/
n5https://www.youtube.com/
dbpedia-ruhttp://ru.dbpedia.org/resource/
xsdhhttp://www.w3.org/2001/XMLSchema#

Statements

Subject Item
dbr:The_Mechanical_Universe
rdf:type
yago:SocialEvent107288639 yago:Television106277280 yago:Instrumentality103575240 yago:Show106619065 yago:Movie106613686 yago:Telecommunication106271778 yago:Object100002684 yago:PhysicalEntity100001930 yago:Medium106254669 yago:Creation103129123 yago:Artifact100021939 wikidata:Q386724 yago:Whole100003553 yago:Abstraction100002137 yago:Event100029378 yago:Documentary106616806 yago:WikicatDocumentaryFilmsAboutScience owl:Thing dbo:Work yago:YagoPermanentlyLocatedEntity wikidata:Q15416 yago:Product104007894 schema:CreativeWork dbo:TelevisionShow yago:PsychologicalFeature100023100 yago:Broadcasting106276697
rdfs:label
Механическая вселенная The Mechanical Universe El universo mecánico L'universo della meccanica
rdfs:comment
The Mechanical Universe...And Beyond is a 52-part telecourse, filmed at the California Institute of Technology, that introduces university level physics, covering topics from Copernicus to quantum mechanics. The 1985-86 series was produced by Caltech and INTELECOM, a nonprofit consortium of California community colleges now known as Intelecom Learning, with financial support from Annenberg/CPB. The series, which aired on PBS affiliate stations before being distributed on LaserDisc and eventually YouTube, is known for its use of computer animation. L'universo della meccanica (The Mechanical Universe) è una serie di unità didattiche/documentari televisivi statunitense di approfondimento storico-scientifico, nella quale "si ripercorre la storia delle leggi della meccanica, dalle intuizioni di Galileo (Pisa 1564 - Arcetri, Firenze 1642) alla teoria della relatività". La serie è stata trasmessa su alcune stazioni PBS e su The Learning Channel tra il 1985 e il 1986. Le puntate sono state pubblicate in italiano da Rai Scuola. Механическая Вселенная (The Mechanical Universe… And Beyond), 52 серийный телевизионный курс лекций снятый в Калифорнийском технологическом институте и спродюсированный Калтехом и (некоммерческий консорциум Калифорнийских колледжей). Сериал знакомит с университетским уровнем физики от Коперника до квантовой механики. Знания механической вселенной совпадают с лекциями преподаваемыми на первом курсе Калифорнийского Технологического Института. На русском языке сериал демонстрировался на телеканале Техно 24. El Universo Mecánico​ es una colección de 52 vídeos realizados en 1985 por el Instituto de Tecnología de California financiado por la Annenberg​ / CPB Project​ y producida por el mismo CALTECH e INTELECOM (un consorcio sin fines de lucro que agrupa colegios comunitarios de California).
dcterms:subject
dbc:1986_American_television_series_endings dbc:PBS_original_programming dbc:Television_series_by_the_Annenberg_Foundation dbc:American_educational_television_series dbc:1985_American_television_series_debuts dbc:Science_education_television_series dbc:1980s_American_documentary_television_series
dbo:wikiPageID
4840666
dbo:wikiPageRevisionID
1120689419
dbo:wikiPageWikiLink
dbr:Charge_(physics) dbr:Electric_battery dbr:Indiana_University_Bloomington dbr:Gifted_children dbr:Synthesizer dbr:Film_editing dbr:Electromagnetic_induction dbr:Electricity dbr:Tom_M._Apostol dbr:Gravity dbr:Rhett_Allain dbr:Frequency dbr:Kepler n11:CPB dbr:Classical_mechanics dbr:Magnet dbr:Electromagnetism dbr:Mains_hum dbr:Lorentz_Transformation dbr:Steven_A._Coons_Award n13:_A_Personal_Voyage dbr:Conservation_law_(physics) dbr:David_Goodstein dbc:PBS_original_programming dbr:Carl_Sagan dbr:Willie_Ruff dbr:Alessandro_Volta dbc:1986_American_television_series_endings dbr:Diffraction dbr:Oil_drop_experiment dbr:Ampère's_force_law dbr:Wired_(magazine) dbr:Music_of_the_spheres dbr:Charles_Wheatstone dbr:Laplace–Runge–Lenz_vector dbr:Charles_H._Holbrow dbr:Force_(physics) dbr:Trigonometry dbr:DNA_polymerase dbr:Conservation_of_momentum dbr:Theory_of_relativity dbc:Television_series_by_the_Annenberg_Foundation dbr:Potential_energy dbr:Japan_Prize_(NHK) dbr:Vector_Field dbr:American_Journal_of_Physics dbr:Chlorine dbr:Differential_equation dbr:Energy dbr:Metaballs dbr:Monty_Python dbr:Computer_graphics dbr:Alternating_Current dbr:Michelangelo dbr:Copernicus dbr:DNA dbr:Gas_Laws dbr:Entropy dbr:Conic_section dbr:Miami dbr:California_Institute_of_Technology dbr:Capacitance dbr:Law_of_inertia dbr:Transformer dbr:Jet_Propulsion_Laboratory dbr:Aristotelian_physics dbr:Wavefunction dbr:Cryogenics dbr:Johannes_Kepler dbc:American_educational_television_series dbr:Momentum dbr:Yorkshire_Television dbr:Eccentricity_(mathematics) dbr:Electromagnetic_wave dbr:Benjamin_Franklin dbr:Regular_dodecahedron dbr:Regular_icosahedron dbr:Jim_Blinn dbr:Miami-Dade_County,_Florida dbr:Computer_animation dbr:William_Gilbert_(astronomer) dbr:Atomic_nucleus dbr:University_of_California,_Berkeley dbr:Integration_(mathematics) dbr:Instructional_Television_Fixed_Service dbr:Solar_System dbr:The_Linde_Group dbr:Maxwell's_Equations dbr:Speed_of_light dbr:Strong_interaction dbr:Precession dbr:Twin_paradox dbr:Electron dbr:Differentiation_(mathematics) dbr:Derivative_(mathematics) dbr:Weak_interaction dbr:Spectral_lines dbr:Kepler_problem dbr:Judith_R._Goodstein dbr:Liquid_air dbr:Albert_Einstein dbr:Planetary_motion dbr:YouTube dbr:Tacoma_Narrows_Bridge_(1940) dbr:Navigation dbr:Carnot_engine dbr:Wave dbr:Magnetism dbr:Biot–Savart_law dbr:Georg_Ohm dbr:Aeroelasticity dbr:National_Science_Foundation dbr:Hydrodynamics dbr:SIGGRAPH dbr:Vector_(mathematics_and_physics) dbr:Simple_harmonic_motion dbr:Celestial_mechanics dbr:LaserDisc dbr:The_Creation_of_Adam dbr:Current_(electricity) dbr:Camera_dolly dbr:The_Paper_Chase_(TV_series) dbr:Executive_producer dbr:The_Feynman_Lectures_on_Physics dbr:Humanities dbr:Periodic_table_of_the_elements dbr:Project_Mathematics! dbr:Ellipse dbr:Educational_television dbr:United_States_dollar dbr:Community_college dbr:MacArthur_Fellows_Program dbr:Secondary_school dbr:Open_University dbr:Electric_power dbr:Galileo_Galilei dbr:Quantum_mechanics dbr:John_Rodgers_(geologist) dbr:Carolco_Pictures dbr:PBS dbr:Michelson–Morley_experiment dbr:Total_Recall_(1990_film) dbr:Galileo dbr:Magnetic_field dbr:Static_Electricity dbr:Arnold_Schwarzenegger dbr:Nielsen_ratings dbr:Physics_Today dbc:1985_American_television_series_debuts dbr:Luminiferous_aether dbr:Oersted_Medal dbr:Billiard_ball dbr:Saturday-morning_cartoon dbr:NTSC dbr:Reflection_(physics) dbr:Electrical_potential dbr:Differential_calculus dbr:Refraction dbr:Isaac_Newton dbr:Electric_field dbr:MIT dbr:Voltage dbr:The_Learning_Channel dbr:Alternating_current dbr:Angular_momentum dbr:Integral_calculus dbr:Linear_differential_equation dbr:Electric_charge dbr:Newton's_law_of_universal_gravitation dbr:Optics dbr:Atom dbr:Los_Angeles_Times dbr:Resonance dbr:Gustav_Kirchhoff dbr:Calculus dbr:James_Clerk_Maxwell dbr:Public_Broadcasting_Service dbr:Michael_Faraday dbr:Helium dbr:The_Physics_Teacher dbc:Science_education_television_series dbr:Special_relativity dbc:1980s_American_documentary_television_series dbr:Hydrogen dbr:Acceleration
dbo:wikiPageExternalLink
n5:watch%3Fv=KNHd__ed40M n5:watch%3Fv=MSUkQXA5_bU n10:themechanicaluniverse.org n5:watch%3Fv=MWrOozSSdW8 n5:watch%3Fv=8BDHN2bY1bg n5:watch%3Fv=jvUcqZlMS8s n5:watch%3Fv=N72oYRZvFzA n5:watch%3Fv=d6eJ8mccvu0 n5:watch%3Fv=f3lwtHRLK6w n5:watch%3Fv=eRzqL9BAeYA n5:watch%3Fv=eZdUKMDfJ_o n5:watch%3Fv=feBT0Anpg4A n5:watch%3Fv=f7MTOb8GUwk n5:watch%3Fv=3yqOdyfq6cU n5:watch%3Fv=6IWhRffFRc8 n5:watch%3Fv=EqYnW67cp58 n5:watch%3Fv=0tSmY4fn5xY n5:watch%3Fv=ca10Sz1lPFE n5:watch%3Fv=wq9TjQZDrAA n5:watch%3Fv=B44InZz-_pE n5:watch%3Fv=2OP0gp9v5XM n5:watch%3Fv=BFLUa0ciMjw n5:playlist%3Flist=PL8_xPU5epJddRABXqJ5h5G0dk-XGtA5cZ n5:watch%3Fv=ygVZjQK5z-8 n5:watch%3Fv=uJvOGp1wzTI n5:watch%3Fv=Ip_jdcA8fcw n5:watch%3Fv=tsJMfy2GH0A n21: n5:watch%3Fv=ufI4TXaevlo n22:series42.html n5:watch%3Fv=0Lx0c0TlzFI n5:watch%3Fv=vvi0JtUzBrc n5:watch%3Fv=w6ynSbzPhjc n5:watch%3Fv=rTdduAErWwQ n5:watch%3Fv=a-Nc5BhjOEU n5:watch%3Fv=r5YM96mA9pk n5:watch%3Fv=sUc13Q8CF3s n5:watch%3Fv=sB4C3YfSZyU n5:watch%3Fv=YHHFZpUTLyg n5:watch%3Fv=YMNZ2oYu-qI n5:watch%3Fv=szCChCc58dg n5:watch%3Fv=Xr6Z-pLqTPA n5:watch%3Fv=XtMmeAjQTXc n5:watch%3Fv=SS4tcajTsW8 n5:watch%3Fv=STJbtg-p4EA n5:watch%3Fv=pyMmRRIB5yw n5:watch%3Fv=Tl-C1r3IabY n5:watch%3Fv=ODs4eyQTz5Y n5:watch%3Fv=P-uyKrPlH9Q n5:watch%3Fv=QonjGa9EPNI n5:watch%3Fv=QZ4j0aUwBr8 n5:watch%3Fv=lZUrLq0LLIU n5:watch%3Fv=l2NtOYrLeFo n5:watch%3Fv=mFca4UwZB4I n5:watch%3Fv=livG1fp-q8s n5:watch%3Fv=gkFD9ZPM3Jg
owl:sameAs
dbpedia-ru:Механическая_вселенная yago-res:The_Mechanical_Universe dbpedia-it:L'universo_della_meccanica dbpedia-es:El_universo_mecánico wikidata:Q565461 n27:4kPT3 freebase:m.0cqdrr
dbp:shortsummary
The basics of the capacitor, with a historical emphasis on Benjamin Franklin. An overview of the subject matter for the latter half of the series. Momentum is conserved when two or more bodies interact. How electricity and magnetism relate to the speed of light. Systems that are stable are at their lowest potential energy. If light is a wave, what is waving? By careful and precise measurement, Michelson and Morley tried to detect the Earth's motion through this medium, the "luminiferous aether", and found nothing. Integration and differentiation are inverse operations of each other. Review of the mathematical operation the derivative. The ancient Greeks introduced the notion that matter is made of atoms. In the early 20th century, spectral lines and the discovery of the atomic nucleus forced the development of new ideas. Light, which had been thought to be a wave, was found to act in some circumstances like a stream of particles. This puzzle led to quantum mechanics. Resonance is produced when the frequency of a disturbing force comes close to the natural harmonic frequency of a system. Gravity, electromagnetism, and the strong and weak nuclear forces. Michael Faraday gave science the image of the electric field. Einstein arrived at the Lorentz transformation from a deeper conceptual understanding, creating a theory full of surprises like the twin paradox. Vectors not only have a magnitude but also a direction. Furthering the understanding of how electric charges exert forces and do work. Millikan's demonstration to accurately measure the charge of an electron. Understanding light as a wave makes sense of reflection, refraction, and diffraction. A review of the series. A body in uniform circular motion has both constant speed and constant acceleration. Introducing the concept of electric charge. An apple falls and the Moon orbits the Earth because of gravity. Albert Einstein used Newton's and Kepler's laws to work on his theory of relativity. Newton's first, second and third laws. In order to make the distribution of electric power practical over great distances, transformers are used to change the voltages of alternating currents. A changing magnetic field creates an electric current: electromagnetic induction, demonstrated by Faraday in 1831. The conservation of energy and angular momentum help determine how eccentric an orbit will be. William Gilbert found that the Earth itself is a magnet, a discovery built upon by modern science. Energy cannot be created or destroyed, only transformed. Disturbing stable systems will produce simple harmonic motion. How Galileo used the law of inertia to answer questions about the stars. The study of thermodynamics begins with gases. An introduction to the Carnot engine, an idealized machine for converting thermal energy into mechanical work. Kepler discovered the orbits of the planets are ellipses. Further investigation of Carnot engines leads to the concept of entropy. Electric currents create, and are influenced by, magnetic fields, per the Biot–Savart and Ampère laws. How falling bodies behave and an introduction to the derivative. Waves are a series of disturbances that propagate through solids, liquids and gases. The "nuts and bolts" of how electrical circuitry was made practical, featuring Wheatstone, Kirchhoff and Ohm. Understanding the wavefunctions that can be assigned to the electron in a hydrogen atom illuminates the shape of the periodic table of the elements. Some concepts apply generally to all vector fields and are useful both in electromagnetism and in the study of fluid flow. The laws that describe planetary motion are used to navigate in space. Einstein realized that, if the speed of light is to be the same for all observers, then distances in space and durations of elapsed time must be relative. A force acting on a spinning object can cause it to precess. Thanks to Alessandro Volta's invention of the electric battery, we can have steady electrical current. Newton proved that an inverse-square law of gravity implies that celestial bodies move in orbits that are conic sections. By finding the missing conceptual piece in the mathematics of electricity and magnetism, Maxwell discovers light is an electromagnetic wave. Faraday makes chlorine gas into a liquid, kicking off the pursuit of lower and lower temperatures, culminating in the liquification of helium. A review of the series up to this point, with the "music of the spheres" as its organizing theme. Features a synthesizer composition by John Rodgers and Willie Ruff. Objects traveling in circles have angular momentum. The conservation of momentum still applies in special relativity, but with new implications. Brief overview of the material in the first 26 episodes.
dbp:writtenby
Albert Abrams Pamela Kleibrink Don Bane, David L. Goodstein David Goodstein Jack Arnold, Richard Bellikoff David L. Goodstein Donald Button & David L. Goodstein Graham Berry, David Goodstein Seth Hill & Tom M. Apostol Peter F. Buffa Jack George Arnold Jack Arnold dbr:Judith_R._Goodstein David Goodstein, Jack Arnold Seth Hill Donald Button, Jack Arnold Ronald J. Casden & Jack George Arnold Don Bane Graham Berry, Jack Arnold Jack Arnold, David Goodstein Deane Rink Don Button Don Button, Jack Arnold
dbp:wikiPageUsesTemplate
dbt:Episode_list dbt:IMDb_title dbt:ISBN dbt:Start_date dbt:Infobox_television dbt:End_date dbt:Reflist dbt:Main
dbp:aux
6 7 4 5 2 3 1 14 15 12 13 10 11 8 9 22 23 20 21 18 19 16 17 30 31 28 29 26 27 24 25 38 39 36 37 34 35 32 33 46 47 44 45 42 43 40 41 52 50 51 48 49
dbp:camera
Pat Allen
dbp:country
United States
dbp:creator
dbr:David_Goodstein
dbp:executiveProducer
Sally Beaty
dbp:genre
dbr:Educational_television
dbp:language
English
dbp:narrated
Aaron Fletcher, Sally Beaty
dbp:network
dbr:Public_Broadcasting_Service
dbp:numEpisodes
52
dbp:numSeasons
1
dbp:pictureFormat
dbr:NTSC
dbp:producer
Peter Buffa
dbp:related
Project Mathematics!
dbp:runtime
1800.0
dbp:starring
David Goodstein
dbp:themeMusicComposer
Sharon Smith, Herb Jimmerson
dbp:title
The Electric Field The Lorentz Transformation Energy, Momentum, and Mass The Millikan Experiment Navigating in Space Integration Velocity and Time Conservation of Momentum Resonance Harmony of the Spheres Kepler's Three Laws Energy and Eccentricity Alternating Currents The Michelson–Morley experiment The Atom Newton's Laws The Engine of Nature dbr:Maxwell's_Equations Harmonic Motion Inertia Beyond the Mechanical Universe Potential Energy Electromagnetic Induction Vector Fields and Hydrodynamics Low Temperatures Capacitance and Potential Angular Momentum dbr:Optics Waves The Magnetic Field The Apple and the Moon Atoms to Quarks The Quantum Mechanical Universe Entropy dbr:Static_Electricity Vectors Fundamental Forces Electric Circuits Introduction The Electric Battery The Kepler Problem Kepler to Einstein Particles and Waves Torques and Gyroscopes Derivatives Magnetism Conservation of Energy Voltage, Energy, and Force The Law of Falling Bodies Gravity, Electricity, Magnetism Moving in Circles Temperature and the Gas Law
dbo:abstract
L'universo della meccanica (The Mechanical Universe) è una serie di unità didattiche/documentari televisivi statunitense di approfondimento storico-scientifico, nella quale "si ripercorre la storia delle leggi della meccanica, dalle intuizioni di Galileo (Pisa 1564 - Arcetri, Firenze 1642) alla teoria della relatività". La serie è stata trasmessa su alcune stazioni PBS e su The Learning Channel tra il 1985 e il 1986. Le puntate sono state pubblicate in italiano da Rai Scuola. La maggior parte dei documentari si aprono con le dimostrazioni in aula del professor David L. Goodstein, del California Institute of Technology, il quale contestualizza le scoperte e racconta aneddoti al riguardo. Nella seconda metà, la computer grafica consente di visualizzare i concetti. Механическая Вселенная (The Mechanical Universe… And Beyond), 52 серийный телевизионный курс лекций снятый в Калифорнийском технологическом институте и спродюсированный Калтехом и (некоммерческий консорциум Калифорнийских колледжей). Сериал знакомит с университетским уровнем физики от Коперника до квантовой механики. Съемки стартовали в 1985 году. В сериале используется большое количество исторических инсценировок и мультипликационных пособий для наглядных объяснений понятий физики. Последние появились благодаря почти 8 часам компьютерной анимации созданной пионером компьютерной графики Джимом Блином(Jim Blinn). Каждый эпизод начинается и заканчивается на лекции профессора Калтеха Дэвида Гудштейна(David Goodstein). После более чем четверти века после создания, сериал все ещё часто используется как дополнительное учебное пособие, благодаря его четким объяснениям фундаментальных понятий, таких как специальная теория относительности. Знания механической вселенной совпадают с лекциями преподаваемыми на первом курсе Калифорнийского Технологического Института. На русском языке сериал демонстрировался на телеканале Техно 24. The Mechanical Universe...And Beyond is a 52-part telecourse, filmed at the California Institute of Technology, that introduces university level physics, covering topics from Copernicus to quantum mechanics. The 1985-86 series was produced by Caltech and INTELECOM, a nonprofit consortium of California community colleges now known as Intelecom Learning, with financial support from Annenberg/CPB. The series, which aired on PBS affiliate stations before being distributed on LaserDisc and eventually YouTube, is known for its use of computer animation. El Universo Mecánico​ es una colección de 52 vídeos realizados en 1985 por el Instituto de Tecnología de California financiado por la Annenberg​ / CPB Project​ y producida por el mismo CALTECH e INTELECOM (un consorcio sin fines de lucro que agrupa colegios comunitarios de California). La serie presenta la física a nivel universitario, abarcando temas desde Copérnico a la mecánica cuántica. Para ello utiliza dramatizaciones históricas y animaciones que explican conceptos de la física. Estas últimas eran unas de las animaciones más avanzadas de la época:​ casi 8 horas de animación por ordenador a cargo del experto del Laboratorio de Propulsión a Chorro de la NASA . Cada episodio se abre y se cierra con una conferencia "fantasma" del profesor David Goodstein del Instituto Tecnológico de California. A pesar de su antigüedad, la serie se utiliza muy a menudo incluso hoy día en escuelas[cita requerida], gracias al gran rigor científico de su contenido y a su cuidadosa exposición de hechos y supuestos prácticos, como una ayuda suplementaria para explicar fenómenos como la relatividad especial. Durante el transcurso de los vídeos se abarcan contenidos como la electricidad, la mecánica clásica, el electromagnetismo, la termodinámica, la relatividad y la mecánica cuántica, así como aborda las biografías de los más importantes científicos de la historia y sus descubrimientos, como por ejemplo Johannes Kepler, Isaac Newton, Galileo Galilei o Albert Einstein, entre otros.
dbp:directedby
Robert Lattanzio Mark Rothschild Peter Robinson uncredited Peter F. Buffa
dbp:episodenumber
14 15 12 13 10 11 8 9 6 7 4 5 2 3 1 30 31 28 29 26 27 24 25 22 23 20 21 18 19 16 17 46 47 44 45 42 43 40 41 38 39 36 37 34 35 32 33 52 50 51 48 49
prov:wasDerivedFrom
wikipedia-en:The_Mechanical_Universe?oldid=1120689419&ns=0
n26:runtime
30.0
dbo:wikiPageLength
52607
dbo:imdbId
0396993
dbo:numberOfEpisodes
52
dbo:numberOfSeasons
1
dbo:runtime
1800.0
dbo:creator
dbr:David_Goodstein
dbo:format
dbr:NTSC
dbo:genre
dbr:Educational_television
dbo:network
dbr:Public_Broadcasting_Service
dbo:related
dbr:Project_Mathematics!
dbo:starring
dbr:David_Goodstein
foaf:isPrimaryTopicOf
wikipedia-en:The_Mechanical_Universe