This HTML5 document contains 74 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13http://dbpedia.org/resource/File:
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n17http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n19https://skepsisfera.blogspot.com/2010/04/
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Toric_code
rdf:type
yago:Artifact100021939 yago:WikicatFault-tolerantComputerSystems yago:Object100002684 yago:Whole100003553 dbo:Disease yago:System104377057 yago:Instrumentality103575240 yago:ComputerSystem103085915 yago:PhysicalEntity100001930
rdfs:label
Code de Kitaev Toric code
rdfs:comment
The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order(first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev. Le code de Kitaev (aussi appelé le « code torique ») est un code de correction d'erreurs quantiques topologique, qui peut être défini par le formalisme des codes stabilisateurs sur un réseau carré 2D Ce code fait partie de la famille des codes de surfaces et il possède des conditions aux bords périodiques, ce qui forme donc un tore.
foaf:depiction
n17:ToricCodeTorus.png n17:ToricCodeLattice.png
dct:subject
dbc:Fault-tolerant_computer_systems dbc:Quantum_phases dbc:Condensed_matter_physics dbc:Quantum_information_science
dbo:wikiPageID
29260402
dbo:wikiPageRevisionID
1121888699
dbo:wikiPageWikiLink
dbr:Anyon dbr:Rydberg_atoms dbr:Bosonic dbr:Qubit dbr:Hashing_bound dbr:String-net_liquid dbr:Quantum_spin_liquid dbc:Quantum_phases dbr:Quasiparticles n13:ToricCodeLattice.png n13:ToricCodeTorus.png dbr:Topological_entanglement_entropy dbr:Fermionic dbr:Square_lattice dbr:Planar_graph dbr:Spin–statistics_theorem dbr:Quantum_computation dbr:Edmonds's_matching_algorithm dbr:Spin_(physics) dbr:Lattice_gauge_theory dbc:Condensed_matter_physics dbc:Quantum_information_science dbr:Quantum_error_correction dbr:One-way_quantum_computer dbr:Stabilizer_code dbr:Spin_liquid dbr:Josephson_junctions dbr:Anyons dbr:Quantum_gate dbr:Torus dbr:Syndrome_decoding dbc:Fault-tolerant_computer_systems dbr:Spin-½ dbr:Topological_order dbr:Quantum_information dbr:Alexei_Kitaev
dbo:wikiPageExternalLink
n19:kitaevs-toric-code.html
owl:sameAs
freebase:m.0ds4j_6 yago-res:Toric_code n18:4wQwJ dbpedia-fr:Code_de_Kitaev wikidata:Q7825777
dbp:wikiPageUsesTemplate
dbt:Clarify dbt:Definition_needed dbt:Quantum_computing dbt:Reflist
dbo:thumbnail
n17:ToricCodeLattice.png?width=300
dbo:abstract
The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of topological order—Z2 topological order(first studied in the context of Z2 spin liquid in 1991). The toric code can also be considered to be a Z2 lattice gauge theory in a particular limit. It was introduced by Alexei Kitaev. The toric code gets its name from its periodic boundary conditions, giving it the shape of a torus. These conditions give the model translational invariance, which is useful for analytic study. However, some experimental realizations require open boundary conditions, allowing the system to be embedded on a 2D surface. The resulting code is typically known as the planar code. This has identical behaviour to the toric code in most, but not all, cases. Le code de Kitaev (aussi appelé le « code torique ») est un code de correction d'erreurs quantiques topologique, qui peut être défini par le formalisme des codes stabilisateurs sur un réseau carré 2D Ce code fait partie de la famille des codes de surfaces et il possède des conditions aux bords périodiques, ce qui forme donc un tore.
gold:hypernym
dbr:Error
prov:wasDerivedFrom
wikipedia-en:Toric_code?oldid=1121888699&ns=0
dbo:wikiPageLength
29791
foaf:isPrimaryTopicOf
wikipedia-en:Toric_code