. . . . . . . "Add 4 to 100, multiply by 8 and add to 62,000. This is \u2018approximately\u2019 the circumference of a circle whose diameter is 20,000."@en . . . "Calcolo di pi greco"@it . . . . . "\u062A\u0642\u0631\u064A\u0628\u0627\u062A \u0625\u0644\u0649 \u03C0"@ar . . . . . . . . . . . . . "Approximations for the mathematical constant pi (\u03C0) in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century."@en . . . . . . . . . . . "\u0627\u0644\u0628\u062D\u062B \u0639\u0646 \u062A\u0642\u0631\u064A\u0628\u0627\u062A \u0625\u0644\u0649 \u03C0 (\u0628\u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629: Approximations of \u03C0)\u200F \u062C\u0632\u0621 \u0644\u0627 \u064A\u062A\u062C\u0632\u0623 \u0645\u0646 \u062A\u0627\u0631\u064A\u062E \u0627\u0644\u0631\u064A\u0627\u0636\u064A\u0627\u062A."@ar . . . . . . . . . . . "\u0627\u0644\u0628\u062D\u062B \u0639\u0646 \u062A\u0642\u0631\u064A\u0628\u0627\u062A \u0625\u0644\u0649 \u03C0 (\u0628\u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629: Approximations of \u03C0)\u200F \u062C\u0632\u0621 \u0644\u0627 \u064A\u062A\u062C\u0632\u0623 \u0645\u0646 \u062A\u0627\u0631\u064A\u062E \u0627\u0644\u0631\u064A\u0627\u0636\u064A\u0627\u062A."@ar . . . . "\"verses: 6.12.40-45"@en . . . . . . "4416073"^^ . . . . . "Aproxima\u00E7\u00F5es da constante matem\u00E1tica pi (\u03C0) na hist\u00F3ria da matem\u00E1tica atingiram uma precis\u00E3o de 0,04% antes do in\u00EDcio da era moderna (Arquimedes). Na matem\u00E1tica chinesa a aproxima\u00E7\u00E3o foi melhorada, correspondendo a aproximadamente sete d\u00EDgitos decimais no s\u00E9culo V. Progressos adicionais n\u00E3o foram registrados at\u00E9 o s\u00E9culo XV (Ghiyath al-Kashi). Matem\u00E1ticos do in\u00EDcio da idade moderna obtiveram uma precis\u00E3o de 35 d\u00EDgitos no in\u00EDcio do s\u00E9culo XVII (Ludolph van Ceulen), e 126 d\u00EDgitos no s\u00E9culo XIX (Jurij Vega)."@pt . . . . . . . . . . . . . . . "\u51E0\u4E2A\u6587\u660E\u53E4\u56FD\u5747\u5728\u6B77\u53F2\u65E9\u671F\u5C31\u8BA1\u7B97\u51FA\u4E86\u8F83\u7CBE\u786E\u7684\u7684\u8FD1\u4F3C\u503C\u4EE5\u4FBF\u4E8E\u8655\u7406\u751F\u4EA7\u7684\u9700\u8981\u3002\u516C\u51435\u4E16\u7EAA\u65F6\uFF0C\u4E2D\u570B\u5289\u5B8B\u6570\u5B66\u5BB6\u7956\u51B2\u4E4B\u7528\u51E0\u4F55\u65B9\u6CD5\u5C06\u5706\u5468\u7387\u8BA1\u7B97\u5230\u5C0F\u6570\u70B9\u540E7\u4F4D\u6570\u5B57\u3002\u5927\u7EA6\u540C\u4E00\u65F6\u95F4\uFF0C\u5370\u5EA6\u7684\u6570\u5B66\u5BB6\u4E5F\u5C06\u5706\u5468\u7387\u8BA1\u7B97\u5230\u5C0F\u6570\u70B9\u540E5\u4F4D\u3002\u5386\u53F2\u4E0A\u9996\u4E2A\u7684\u7CBE\u786E\u65E0\u7A77\u7EA7\u6570\u516C\u5F0F\uFF08\u5373\u03C0\u7684\u83B1\u5E03\u5C3C\u8328\u516C\u5F0F\uFF09\u76F4\u5230\u7EA61000\u5E74\u540E\u624D\u7531\u5370\u5EA6\u6570\u5B66\u5BB6\u53D1\u73B0\u3002\u5FAE\u7A4D\u5206\u7684\u51FA\u73FE\uFF0C\u5F88\u5FEB\u5730\u5C07\u7684\u8A08\u7B97\u4F4D\u6578\u63A8\u81F3\u6578\u767E\u4F4D\uFF0C\u8DB3\u4EE5\u6EFF\u8DB3\u4EFB\u4F55\u79D1\u5B78\u5DE5\u7A0B\u7684\u8A08\u7B97\u9700\u6C42\u3002\u572820\u548C21\u4E16\u7EAA\uFF0C\u7531\u4E8E\u8BA1\u7B97\u673A\u6280\u672F\u7684\u5FEB\u901F\u53D1\u5C55\uFF0C\u501F\u52A9\u8BA1\u7B97\u673A\u7684\u8BA1\u7B97\u4F7F\u5F97\u7684\u7CBE\u5EA6\u6025\u901F\u63D0\u9AD8\u3002\u622A\u81F32021\u5E748\u6708\uFF0C\u7684\u5341\u8FDB\u5236\u7CBE\u5EA6\u5DF2\u9AD8\u8FBE6.28\u00D71013\u4F4D\u3002\u5F53\u524D\u4EBA\u7C7B\u8BA1\u7B97\u7684\u503C\u7684\u4E3B\u8981\u76EE\u7684\u662F\u4E3A\u6253\u7834\u8BB0\u5F55\u3001\u6D4B\u8BD5\u8D85\u7EA7\u8BA1\u7B97\u673A\u7684\u8BA1\u7B97\u80FD\u529B\u548C\u9AD8\u7CBE\u5EA6\u4E58\u6CD5\u7B97\u6CD5\uFF0C\u56E0\u4E3A\u51E0\u4E4E\u6240\u6709\u7684\u79D1\u5B66\u7814\u7A76\u5BF9\u7684\u7CBE\u5EA6\u8981\u6C42\u90FD\u4E0D\u4F1A\u8D85\u8FC7\u51E0\u767E\u4F4D\u3002"@zh . . . . . . . . . . . "Dans l'histoire des math\u00E9matiques, les approximations de la constante \u03C0 ont atteint une pr\u00E9cision de 0,04 % de la valeur r\u00E9elle avant le d\u00E9but de l'\u00E8re commune (Archim\u00E8de). Au Ve si\u00E8cle, des math\u00E9maticiens chinois les ont am\u00E9lior\u00E9es jusqu'\u00E0 sept d\u00E9cimales. Le record de l'approximation manuelle de \u03C0 est d\u00E9tenu par William Shanks, qui a calcul\u00E9 527 d\u00E9cimales correctes vers 1873. Depuis le milieu du XXe si\u00E8cle, l'approximation de \u03C0 est effectu\u00E9e sur ordinateurs par des logiciels sp\u00E9cifiques."@fr . "Dans l'histoire des math\u00E9matiques, les approximations de la constante \u03C0 ont atteint une pr\u00E9cision de 0,04 % de la valeur r\u00E9elle avant le d\u00E9but de l'\u00E8re commune (Archim\u00E8de). Au Ve si\u00E8cle, des math\u00E9maticiens chinois les ont am\u00E9lior\u00E9es jusqu'\u00E0 sept d\u00E9cimales. De grandes avanc\u00E9es suppl\u00E9mentaires n'ont \u00E9t\u00E9 r\u00E9alis\u00E9es qu'\u00E0 partir du XVe si\u00E8cle (Al-Kashi). Les premiers math\u00E9maticiens modernes ont atteint une pr\u00E9cision de 35 d\u00E9cimales au d\u00E9but du XVIIe si\u00E8cle (Ludolph van Ceulen) et 126 chiffres au XIXe si\u00E8cle (Jurij Vega), d\u00E9passant la pr\u00E9cision requise pour toute application concevable en dehors des math\u00E9matiques pures. Le record de l'approximation manuelle de \u03C0 est d\u00E9tenu par William Shanks, qui a calcul\u00E9 527 d\u00E9cimales correctes vers 1873. Depuis le milieu du XXe si\u00E8cle, l'approximation de \u03C0 est effectu\u00E9e sur ordinateurs par des logiciels sp\u00E9cifiques. Le 9 juin 2022, le record est \u00E9tabli avec cent mille milliards de d\u00E9cimales par Emma Haruka Iwao, travaillant sur Google Cloud durant 157 jours."@fr . . "The Moon is handed down by memory to be eleven thousand yojanas in diameter. Its peripheral circle happens to be thirty three thousand yojanas when calculated."@en . "Dit artikel behandelt twee meetkundige benaderingen van ."@nl . "It does what?"@en . . . . . . . "76939"^^ . . . "Approximations of \u03C0"@en . . . "\u0100ryabha\u1E6D\u012Bya"@en . . . . . . . "Esistono diversi metodi per il calcolo di \u03C0 (pi greco)."@it . . . . . . . . . . . . "Aproxima\u00E7\u00F5es da constante matem\u00E1tica pi (\u03C0) na hist\u00F3ria da matem\u00E1tica atingiram uma precis\u00E3o de 0,04% antes do in\u00EDcio da era moderna (Arquimedes). Na matem\u00E1tica chinesa a aproxima\u00E7\u00E3o foi melhorada, correspondendo a aproximadamente sete d\u00EDgitos decimais no s\u00E9culo V. Progressos adicionais n\u00E3o foram registrados at\u00E9 o s\u00E9culo XV (Ghiyath al-Kashi). Matem\u00E1ticos do in\u00EDcio da idade moderna obtiveram uma precis\u00E3o de 35 d\u00EDgitos no in\u00EDcio do s\u00E9culo XVII (Ludolph van Ceulen), e 126 d\u00EDgitos no s\u00E9culo XIX (Jurij Vega). O recorde de aproxima\u00E7\u00E3o manual do n\u00FAmero pi foi de William Shanks, que calculou corretamente 527 d\u00EDgitos em 1873. Desde a metade do s\u00E9culo XX a aproxima\u00E7\u00E3o de tem sido tarefa de computadores eletr\u00F4nicos digitais; em novembro de 2016, o recorde \u00E9 22,4 trilh\u00F5es * trilh\u00F5es de d\u00EDgitos. (Para uma vis\u00E3o compreensiva ver cronologia do c\u00E1lculo de pi.)"@pt . "December 2021"@en . . . . . . . . . . . . "The Sun is eight thousand\u00A0yojanas and another two thousand\n\u00A0yojanas in diameter. From that its peripheral circle comes to be equal to thirty thousand yojanas."@en . . . . . . . . . . . . . . . . . "Bhishma Parva of the Mahabharata\""@en . "\u51E0\u4E2A\u6587\u660E\u53E4\u56FD\u5747\u5728\u6B77\u53F2\u65E9\u671F\u5C31\u8BA1\u7B97\u51FA\u4E86\u8F83\u7CBE\u786E\u7684\u7684\u8FD1\u4F3C\u503C\u4EE5\u4FBF\u4E8E\u8655\u7406\u751F\u4EA7\u7684\u9700\u8981\u3002\u516C\u51435\u4E16\u7EAA\u65F6\uFF0C\u4E2D\u570B\u5289\u5B8B\u6570\u5B66\u5BB6\u7956\u51B2\u4E4B\u7528\u51E0\u4F55\u65B9\u6CD5\u5C06\u5706\u5468\u7387\u8BA1\u7B97\u5230\u5C0F\u6570\u70B9\u540E7\u4F4D\u6570\u5B57\u3002\u5927\u7EA6\u540C\u4E00\u65F6\u95F4\uFF0C\u5370\u5EA6\u7684\u6570\u5B66\u5BB6\u4E5F\u5C06\u5706\u5468\u7387\u8BA1\u7B97\u5230\u5C0F\u6570\u70B9\u540E5\u4F4D\u3002\u5386\u53F2\u4E0A\u9996\u4E2A\u7684\u7CBE\u786E\u65E0\u7A77\u7EA7\u6570\u516C\u5F0F\uFF08\u5373\u03C0\u7684\u83B1\u5E03\u5C3C\u8328\u516C\u5F0F\uFF09\u76F4\u5230\u7EA61000\u5E74\u540E\u624D\u7531\u5370\u5EA6\u6570\u5B66\u5BB6\u53D1\u73B0\u3002\u5FAE\u7A4D\u5206\u7684\u51FA\u73FE\uFF0C\u5F88\u5FEB\u5730\u5C07\u7684\u8A08\u7B97\u4F4D\u6578\u63A8\u81F3\u6578\u767E\u4F4D\uFF0C\u8DB3\u4EE5\u6EFF\u8DB3\u4EFB\u4F55\u79D1\u5B78\u5DE5\u7A0B\u7684\u8A08\u7B97\u9700\u6C42\u3002\u572820\u548C21\u4E16\u7EAA\uFF0C\u7531\u4E8E\u8BA1\u7B97\u673A\u6280\u672F\u7684\u5FEB\u901F\u53D1\u5C55\uFF0C\u501F\u52A9\u8BA1\u7B97\u673A\u7684\u8BA1\u7B97\u4F7F\u5F97\u7684\u7CBE\u5EA6\u6025\u901F\u63D0\u9AD8\u3002\u622A\u81F32021\u5E748\u6708\uFF0C\u7684\u5341\u8FDB\u5236\u7CBE\u5EA6\u5DF2\u9AD8\u8FBE6.28\u00D71013\u4F4D\u3002\u5F53\u524D\u4EBA\u7C7B\u8BA1\u7B97\u7684\u503C\u7684\u4E3B\u8981\u76EE\u7684\u662F\u4E3A\u6253\u7834\u8BB0\u5F55\u3001\u6D4B\u8BD5\u8D85\u7EA7\u8BA1\u7B97\u673A\u7684\u8BA1\u7B97\u80FD\u529B\u548C\u9AD8\u7CBE\u5EA6\u4E58\u6CD5\u7B97\u6CD5\uFF0C\u56E0\u4E3A\u51E0\u4E4E\u6240\u6709\u7684\u79D1\u5B66\u7814\u7A76\u5BF9\u7684\u7CBE\u5EA6\u8981\u6C42\u90FD\u4E0D\u4F1A\u8D85\u8FC7\u51E0\u767E\u4F4D\u3002"@zh . . . . . . . . . . . . "Aproxima\u00E7\u00F5es de \u03C0"@pt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Esistono diversi metodi per il calcolo di \u03C0 (pi greco)."@it . . . . . . . . . . . . . . . . . . "..."@en . . "1121010873"^^ . . . . "\u5706\u5468\u7387\u8FD1\u4F3C\u503C"@zh . . . . . . . . "Dit artikel behandelt twee meetkundige benaderingen van ."@nl . . . . . . . "Benadering van pi"@nl . . . . . . . . . . . "Approximation de \u03C0"@fr . . . . . . . . . . "Approximations for the mathematical constant pi (\u03C0) in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century. Further progress was not made until the 15th century (through the efforts of Jamsh\u012Bd al-K\u0101sh\u012B). Early modern mathematicians reached an accuracy of 35 digits by the beginning of the 17th century (Ludolph van Ceulen), and 126 digits by the 19th century (Jurij Vega), surpassing the accuracy required for any conceivable application outside of pure mathematics. The record of manual approximation of \u03C0 is held by William Shanks, who calculated 527 digits correctly in 1853. Since the middle of the 20th century, the approximation of \u03C0 has been the task of electronic digital computers (for a comprehensive account, see Chronology of computation of \u03C0). On June 8, 2022, the current record was established by Emma Haruka Iwao with Alexander Yee's y-cruncher with 100 trillion digits."@en . . . . . . . . . . . . . . . . . . . . .