"La 10-cage de Balaban (ou (3,10)-cage de Balaban) est, en th\u00E9orie des graphes, un graphe r\u00E9gulier poss\u00E9dant 70 sommets et 105 ar\u00EAtes. Il porte le nom du math\u00E9maticien A. T. Balaban qui en a publi\u00E9 la description en 1972."@fr . . . . . . . . "2"^^ . . . . . . "La 10-cage de Balaban (ou (3,10)-cage de Balaban) est, en th\u00E9orie des graphes, un graphe r\u00E9gulier poss\u00E9dant 70 sommets et 105 ar\u00EAtes. Il porte le nom du math\u00E9maticien A. T. Balaban qui en a publi\u00E9 la description en 1972."@fr . . "3"^^ . . . . . . "2"^^ . "105"^^ . "10-\u041A\u043B\u0435\u0442\u043A\u0430 \u0411\u0430\u043B\u0430\u0431\u0430\u043D\u0430 \u0438\u043B\u0438 \u0431\u0430\u043B\u0430\u0431\u0430\u043D\u043E\u0432\u0430 (3,10)-\u043A\u043B\u0435\u0442\u043A\u0430 \u2014 \u044D\u0442\u043E 3-\u0440\u0435\u0433\u0443\u043B\u044F\u0440\u043D\u044B\u0439 \u0433\u0440\u0430\u0444 \u0441 70 \u0432\u0435\u0440\u0448\u0438\u043D\u0430\u043C\u0438 \u0438 105 \u0440\u0451\u0431\u0440\u0430\u043C\u0438, \u043D\u0430\u0437\u0432\u0430\u043D\u043D\u044B\u0439 \u0438\u043C\u0435\u043D\u0435\u043C \u0445\u0438\u043C\u0438\u043A\u0430 \u0440\u0443\u043C\u044B\u043D\u0441\u043A\u043E\u0433\u043E \u043F\u0440\u043E\u0438\u0441\u0445\u043E\u0436\u0434\u0435\u043D\u0438\u044F . \u041E\u043F\u0443\u0431\u043B\u0438\u043A\u043E\u0432\u0430\u043D \u0432 1972. \u042D\u0442\u043E \u0431\u044B\u043B\u0430 \u043F\u0435\u0440\u0432\u0430\u044F \u043E\u0431\u043D\u0430\u0440\u0443\u0436\u0435\u043D\u043D\u0430\u044F (3,10)-\u043A\u043B\u0435\u0442\u043A\u0430, \u043D\u043E \u043D\u0435 \u0435\u0434\u0438\u043D\u0441\u0442\u0432\u0435\u043D\u043D\u0430\u044F."@ru . "1095517339"^^ . . "The Balaban 10-cage"@en . "6"^^ . . "In the mathematical field of graph theory, the Balaban 10-cage or Balaban (3,10)-cage is a 3-regular graph with 70 vertices and 105 edges named after Alexandru T. Balaban. Published in 1972, It was the first 10-cage discovered but it is not unique. The complete list of 10-cages and the proof of minimality was given by Mary R. O'Keefe and Pak Ken Wong. There exist 3 distinct (3,10)-cages, the other two being the Harries graph and the Harries\u2013Wong graph. Moreover, the Harries\u2013Wong graph and Harries graph are cospectral graphs. The characteristic polynomial of the Balaban 10-cage is"@en . . "In the mathematical field of graph theory, the Balaban 10-cage or Balaban (3,10)-cage is a 3-regular graph with 70 vertices and 105 edges named after Alexandru T. Balaban. Published in 1972, It was the first 10-cage discovered but it is not unique. The complete list of 10-cages and the proof of minimality was given by Mary R. O'Keefe and Pak Ken Wong. There exist 3 distinct (3,10)-cages, the other two being the Harries graph and the Harries\u2013Wong graph. Moreover, the Harries\u2013Wong graph and Harries graph are cospectral graphs. The Balaban 10-cage has chromatic number 2, chromatic index 3, diameter 6, girth 10 and is hamiltonian. It is also a 3-vertex-connected graph and 3-edge-connected. The book thickness is 3 and the queue number is 2. The characteristic polynomial of the Balaban 10-cage is"@en . . "10-\u043A\u043B\u0435\u0442\u043A\u0430 \u0411\u0430\u043B\u0430\u0431\u0430\u043D\u0430"@ru . "23714047"^^ . . "6"^^ . . . . . . "80"^^ . . . "Balaban 10-cage"@en . "3"^^ . . . "10-jaula de Balaban"@es . . "En el campo matem\u00E1tico de la teor\u00EDa de grafos, la 10-jaula de Balaban o (3-10)-jaula de Balaban es un 3-grafo regular con 70 v\u00E9rtices y 105 aristas nombrado en honor de .\u200B Publicada en 1972,\u200B Fue la primera (3-10)-jaula descubierta pero no es la \u00FAnica.\u200B La lista completa de (3-10)-jaulas y la prueba de minimalidad fue dada por O'Keefe y Wong.\u200B Existen 3 (3-10)-jaulas distintas, las otras dos son el y el .\u200B La 10-jaula de Balaban tiene n\u00FAmero crom\u00E1tico 2, \u00EDndice crom\u00E1tico 3, di\u00E1metro 6, cintura 10 y es hamiltoniana. El polinomio caracter\u00EDstico de la 10-jaula de Balaban es : ."@es . . "Alexandru T. Balaban"@en . "70"^^ . "3085"^^ . . . . . "Balaban 10-cage"@en . . . . . . . . . . "10"^^ . . "10-cage de Balaban"@fr . "En el campo matem\u00E1tico de la teor\u00EDa de grafos, la 10-jaula de Balaban o (3-10)-jaula de Balaban es un 3-grafo regular con 70 v\u00E9rtices y 105 aristas nombrado en honor de .\u200B Publicada en 1972,\u200B Fue la primera (3-10)-jaula descubierta pero no es la \u00FAnica.\u200B La lista completa de (3-10)-jaulas y la prueba de minimalidad fue dada por O'Keefe y Wong.\u200B Existen 3 (3-10)-jaulas distintas, las otras dos son el y el .\u200B La 10-jaula de Balaban tiene n\u00FAmero crom\u00E1tico 2, \u00EDndice crom\u00E1tico 3, di\u00E1metro 6, cintura 10 y es hamiltoniana. El polinomio caracter\u00EDstico de la 10-jaula de Balaban es : ."@es . . . "10-\u041A\u043B\u0435\u0442\u043A\u0430 \u0411\u0430\u043B\u0430\u0431\u0430\u043D\u0430 \u0438\u043B\u0438 \u0431\u0430\u043B\u0430\u0431\u0430\u043D\u043E\u0432\u0430 (3,10)-\u043A\u043B\u0435\u0442\u043A\u0430 \u2014 \u044D\u0442\u043E 3-\u0440\u0435\u0433\u0443\u043B\u044F\u0440\u043D\u044B\u0439 \u0433\u0440\u0430\u0444 \u0441 70 \u0432\u0435\u0440\u0448\u0438\u043D\u0430\u043C\u0438 \u0438 105 \u0440\u0451\u0431\u0440\u0430\u043C\u0438, \u043D\u0430\u0437\u0432\u0430\u043D\u043D\u044B\u0439 \u0438\u043C\u0435\u043D\u0435\u043C \u0445\u0438\u043C\u0438\u043A\u0430 \u0440\u0443\u043C\u044B\u043D\u0441\u043A\u043E\u0433\u043E \u043F\u0440\u043E\u0438\u0441\u0445\u043E\u0436\u0434\u0435\u043D\u0438\u044F . \u041E\u043F\u0443\u0431\u043B\u0438\u043A\u043E\u0432\u0430\u043D \u0432 1972. \u042D\u0442\u043E \u0431\u044B\u043B\u0430 \u043F\u0435\u0440\u0432\u0430\u044F \u043E\u0431\u043D\u0430\u0440\u0443\u0436\u0435\u043D\u043D\u0430\u044F (3,10)-\u043A\u043B\u0435\u0442\u043A\u0430, \u043D\u043E \u043D\u0435 \u0435\u0434\u0438\u043D\u0441\u0442\u0432\u0435\u043D\u043D\u0430\u044F."@ru . . . . . .