. . . "1096393289"^^ . . . . "Komplett bipartit graf"@sv . "Nella teoria dei grafi, si definisce grafo bipartito completo un grafo bipartito , con e ad indicare i sottoinsiemi dei nodi, tale che: \u00C8 quindi un grafo bipartito in cui esistono tutti gli archi che connettono gli elementi di un insieme a quelli dell'altro, o, come dice la definizione, per ogni coppia di vertici di cui il primo nell'insieme e il secondo nell'insieme esiste un arco che abbia inizio nel primo e termine nel secondo. Questo genere di grafi \u00E8 utilizzato in alcuni algoritmi, in particolare nella soluzione di problemi di assegnamento."@it . . "\uADF8\uB798\uD504 \uC774\uB860\uC5D0\uC11C \uC644\uC804 \uC774\uBD84 \uADF8\uB798\uD504(\u5B8C\u5168\u4E8C\u5206graph, \uC601\uC5B4: complete bipartite graph)\uB780 \uAF2D\uC9D3\uC810\uC758 \uC9D1\uD569\uC774 \uC11C\uB85C \uACB9\uCE58\uC9C0 \uC54A\uB294 \uB450 \uC9D1\uD569 X\uC640 Y\uC758 \uD569\uC9D1\uD569\uC774\uACE0 X\uC758 \uBAA8\uB4E0 \uAF2D\uC9D3\uC810\uC774 Y\uC758 \uAC01\uAC01\uC758 \uAF2D\uC9D3\uC810\uACFC \uD558\uB098\uC758 \uBCC0\uC73C\uB85C \uC5F0\uACB0\uB418\uC5B4 \uC788\uB294 \uC774\uBD84 \uADF8\uB798\uD504\uC774\uB2E4."@ko . "A complete bipartite graph with and"@en . . . . "\u041F\u043E\u043B\u043D\u044B\u0439 \u0434\u0432\u0443\u0434\u043E\u043B\u044C\u043D\u044B\u0439 \u0433\u0440\u0430\u0444 (\u0431\u0438\u043A\u043B\u0438\u043A\u0430) \u2014 \u0441\u043F\u0435\u0446\u0438\u0430\u043B\u044C\u043D\u044B\u0439 \u0432\u0438\u0434 \u0434\u0432\u0443\u0434\u043E\u043B\u044C\u043D\u043E\u0433\u043E \u0433\u0440\u0430\u0444\u0430, \u0443 \u043A\u043E\u0442\u043E\u0440\u043E\u0433\u043E \u043B\u044E\u0431\u0430\u044F \u0432\u0435\u0440\u0448\u0438\u043D\u0430 \u043F\u0435\u0440\u0432\u043E\u0439 \u0434\u043E\u043B\u0438 \u0441\u043E\u0435\u0434\u0438\u043D\u0435\u043D\u0430 \u0441\u043E \u0432\u0441\u0435\u043C\u0438 \u0432\u0435\u0440\u0448\u0438\u043D\u0430\u043C\u0438 \u0432\u0442\u043E\u0440\u043E\u0439 \u0434\u043E\u043B\u0438 \u0432\u0435\u0440\u0448\u0438\u043D."@ru . . "2"^^ . . . . . . . . . . . . . "\u041F\u043E\u0432\u043D\u0438\u0439 \u0434\u0432\u043E\u0447\u0430\u0441\u0442\u043A\u043E\u0432\u0438\u0439 \u0433\u0440\u0430\u0444"@uk . . . "Grafo bipartito completo"@es . "En grafeteorio, plena dukolora grafeo a\u016D dukliko estas speciala speco de dukolora grafeo \u0109e kiu \u0109iu vertico de la unua aro estas koneksa al \u0109iu vertico de la dua aro. Tiel, plena dukolora grafeo G = (V1 + V2, E) estas dukolora grafeo tia ke por \u0109iuj du verticoj kaj , estas e\u011Do v1v2 en E. Pro tio ke la grafeo estas dukolora, por \u0109iuj du verticoj kaj , e\u011Do v1v2 ne estu en G; same por kaj . Plena dukolora grafeo kies dispartigoj havas vertic-nombrojn |V1|=m kaj |V2|=n estas skribata kiel K{m, n}. Por \u0109iu k, K{1, k} nomi\u011Das stelgrafeo."@eo . . "En komplett bipartit graf \u00E4r inom grafteori en s\u00E4rskild bipartit graf d\u00E4r varje nod i ena nodm\u00E4ngden \u00E4r ansluten till alla noder i den andra nodm\u00E4ngden."@sv . . . . . "\u00DApln\u00FD bipartitn\u00ED graf"@cs . "\u041F\u043E\u0432\u043D\u0438\u0439 \u0434\u0432\u043E\u0447\u0430\u0441\u0442\u043A\u043E\u0432\u0438\u0439 \u0433\u0440\u0430\u0444 (\u0431\u0456\u043A\u043B\u0456\u043A\u0430) \u2014 \u0441\u043F\u0435\u0446\u0456\u0430\u043B\u044C\u043D\u0438\u0439 \u0432\u0438\u0434 \u0434\u0432\u043E\u0447\u0430\u0441\u0442\u043A\u043E\u0432\u043E\u0433\u043E \u0433\u0440\u0430\u0444\u0430, \u0443 \u044F\u043A\u043E\u0433\u043E \u0431\u0443\u0434\u044C-\u044F\u043A\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0430 \u043F\u0435\u0440\u0448\u043E\u0457 \u0447\u0430\u0441\u0442\u043A\u0438 \u0437'\u0454\u0434\u043D\u0430\u043D\u0430 \u0437 \u0443\u0441\u0456\u043C\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0430\u043C\u0438 \u0434\u0440\u0443\u0433\u043E\u0457 \u0447\u0430\u0441\u0442\u043A\u0438 \u0432\u0435\u0440\u0448\u0438\u043D."@uk . . "En grafeteorio, plena dukolora grafeo a\u016D dukliko estas speciala speco de dukolora grafeo \u0109e kiu \u0109iu vertico de la unua aro estas koneksa al \u0109iu vertico de la dua aro. Tiel, plena dukolora grafeo G = (V1 + V2, E) estas dukolora grafeo tia ke por \u0109iuj du verticoj kaj , estas e\u011Do v1v2 en E. Pro tio ke la grafeo estas dukolora, por \u0109iuj du verticoj kaj , e\u011Do v1v2 ne estu en G; same por kaj . Plena dukolora grafeo kies dispartigoj havas vertic-nombrojn |V1|=m kaj |V2|=n estas skribata kiel K{m, n}. Por \u0109iu k, K{1, k} nomi\u011Das stelgrafeo."@eo . . . . . . . "Complete bipartite graph"@en . . . . "\u5B8C\u51682\u90E8\u30B0\u30E9\u30D5\uFF08\u304B\u3093\u305C\u3093\u306B\u3076\u30B0\u30E9\u30D5\u3001\u82F1: complete bipartite graph\uFF09\u306F\u3001\u30B0\u30E9\u30D5\u7406\u8AD6\u306B\u304A\u3044\u3066\u30012\u90E8\u30B0\u30E9\u30D5\u306E\u3046\u3061\u7279\u306B\u7B2C1\u306E\u96C6\u5408\u306B\u5C5E\u3059\u308B\u305D\u308C\u305E\u308C\u306E\u9802\u70B9\u304B\u3089\u7B2C2\u306E\u96C6\u5408\u306B\u5C5E\u3059\u308B\u5168\u3066\u306E\u9802\u70B9\u306B\u8FBA\u304C\u4F38\u3073\u3066\u3044\u308B\u3082\u306E\u3092\u3044\u3046\u3002biclique\u3068\u3082\u3002"@ja . "Nella teoria dei grafi, si definisce grafo bipartito completo un grafo bipartito , con e ad indicare i sottoinsiemi dei nodi, tale che: \u00C8 quindi un grafo bipartito in cui esistono tutti gli archi che connettono gli elementi di un insieme a quelli dell'altro, o, come dice la definizione, per ogni coppia di vertici di cui il primo nell'insieme e il secondo nell'insieme esiste un arco che abbia inizio nel primo e termine nel secondo. Questo genere di grafi \u00E8 utilizzato in alcuni algoritmi, in particolare nella soluzione di problemi di assegnamento."@it . . . . . "No campo da matem\u00E1tica da teoria dos grafos, um grafo bipartido completo ou biclique \u00E9 um tipo especial de grafo bipartido onde cada v\u00E9rtice do primeiro conjunto est\u00E1 associado a cada v\u00E9rtice do segundo conjunto."@pt . "En teor\u00EDa de grafos, un grafo bipartito completo es un grafo bipartito en el que todos los v\u00E9rtices de uno de los subconjuntos de la partici\u00F3n est\u00E1n conectados a todos los v\u00E9rtices del segundo subconjunto, y viceversa.\u200B Este concepto se puede generalizar al de grafo s-bipartito completo, como un grafo cuyo conjunto de v\u00E9rtices se puede particionar en s subconjuntos, de modo que todos los pares de v\u00E9rtices pertenecientes a subconjuntos diferentes son adyacentes.\u200B"@es . . . . . . . . . "525320"^^ . . "12069"^^ . . . "Vollst\u00E4ndig bipartiter Graph"@de . . . "Graphe biparti complet"@fr . . . "Grafo bipartido completo"@pt . . . . "\u00DApln\u00FD bipartitn\u00ED graf (tak\u00E9 \u00FApln\u00FD dvoud\u00EDln\u00FD graf nebo \u00FApln\u00FD sud\u00FD graf) je pojem z matematiky, z teorie graf\u016F. Rozum\u00ED se j\u00EDm takov\u00FD bipartitn\u00ED graf, do kter\u00E9ho ji\u017E nelze p\u0159idat \u017E\u00E1dnou hranu. Jeho vrcholy lze tedy rozd\u011Blit na dv\u011B disjunktn\u00ED mno\u017Einy a ka\u017Ed\u00FD vrchol z prvn\u00ED mno\u017Einy je spojen hranou s ka\u017Ed\u00FDm vrcholem z druh\u00E9 mno\u017Einy. Tyto grafy jsou a\u017E na isomorfismus ur\u010Deny jednozna\u010Dn\u011B po\u010Dtem vrchol\u016F obou mno\u017Ein a zna\u010D\u00ED se . Ot\u00E1zka rovinnosti \u00FApln\u00E9ho bipartitn\u00EDho grafu je j\u00E1drem \u00FAlohy o t\u0159ech domech a t\u0159ech studn\u00E1ch."@cs . "\uC644\uC804 \uC774\uBD84 \uADF8\uB798\uD504"@ko . "En th\u00E9orie des graphes, un graphe est dit biparti complet (ou encore est appel\u00E9 une biclique) s'il est biparti et chaque sommet du premier ensemble est reli\u00E9 \u00E0 tous les sommets du second ensemble. Plus pr\u00E9cis\u00E9ment, il existe une partition de son ensemble de sommets en deux sous-ensembles et telle que chaque sommet de est reli\u00E9 \u00E0 chaque sommet de [r\u00E9f. n\u00E9cessaire]. Si le premier ensemble est de cardinal m et le second ensemble est de cardinal n, le graphe biparti complet est not\u00E9 ."@fr . . . . "No campo da matem\u00E1tica da teoria dos grafos, um grafo bipartido completo ou biclique \u00E9 um tipo especial de grafo bipartido onde cada v\u00E9rtice do primeiro conjunto est\u00E1 associado a cada v\u00E9rtice do segundo conjunto."@pt . . . . . . "En teor\u00EDa de grafos, un grafo bipartito completo es un grafo bipartito en el que todos los v\u00E9rtices de uno de los subconjuntos de la partici\u00F3n est\u00E1n conectados a todos los v\u00E9rtices del segundo subconjunto, y viceversa.\u200B Este concepto se puede generalizar al de grafo s-bipartito completo, como un grafo cuyo conjunto de v\u00E9rtices se puede particionar en s subconjuntos, de modo que todos los pares de v\u00E9rtices pertenecientes a subconjuntos diferentes son adyacentes.\u200B"@es . "\uADF8\uB798\uD504 \uC774\uB860\uC5D0\uC11C \uC644\uC804 \uC774\uBD84 \uADF8\uB798\uD504(\u5B8C\u5168\u4E8C\u5206graph, \uC601\uC5B4: complete bipartite graph)\uB780 \uAF2D\uC9D3\uC810\uC758 \uC9D1\uD569\uC774 \uC11C\uB85C \uACB9\uCE58\uC9C0 \uC54A\uB294 \uB450 \uC9D1\uD569 X\uC640 Y\uC758 \uD569\uC9D1\uD569\uC774\uACE0 X\uC758 \uBAA8\uB4E0 \uAF2D\uC9D3\uC810\uC774 Y\uC758 \uAC01\uAC01\uC758 \uAF2D\uC9D3\uC810\uACFC \uD558\uB098\uC758 \uBCC0\uC73C\uB85C \uC5F0\uACB0\uB418\uC5B4 \uC788\uB294 \uC774\uBD84 \uADF8\uB798\uD504\uC774\uB2E4."@ko . "\u5B8C\u5168\u4E8C\u5206\u56FE\u662F\u4E00\u79CD\u7279\u6B8A\u7684\u4E8C\u5206\u56FE\uFF0C\u53EF\u4EE5\u628A\u56FE\u4E2D\u7684\u9876\u70B9\u5206\u6210\u4E24\u4E2A\u96C6\u5408\uFF0C\u4F7F\u5F97\u7B2C\u4E00\u4E2A\u96C6\u5408\u4E2D\u7684\u6240\u6709\u9876\u70B9\u90FD\u4E0E\u7B2C\u4E8C\u4E2A\u96C6\u5408\u4E2D\u7684\u6240\u6709\u9876\u70B9\u76F8\u8FDE\u3002"@zh . . . "\u5B8C\u5168\u4E8C\u5206\u56FE\u662F\u4E00\u79CD\u7279\u6B8A\u7684\u4E8C\u5206\u56FE\uFF0C\u53EF\u4EE5\u628A\u56FE\u4E2D\u7684\u9876\u70B9\u5206\u6210\u4E24\u4E2A\u96C6\u5408\uFF0C\u4F7F\u5F97\u7B2C\u4E00\u4E2A\u96C6\u5408\u4E2D\u7684\u6240\u6709\u9876\u70B9\u90FD\u4E0E\u7B2C\u4E8C\u4E2A\u96C6\u5408\u4E2D\u7684\u6240\u6709\u9876\u70B9\u76F8\u8FDE\u3002"@zh . . . . . "En teoria de grafs un graf bipartit complet \u00E9s aquell graf bipartit en el qual tots els v\u00E8rtexs de la partici\u00F3 estan connectats a tots els v\u00E8rtexs de la partici\u00F3 i viceversa."@ca . . . "\u041F\u043E\u043B\u043D\u044B\u0439 \u0434\u0432\u0443\u0434\u043E\u043B\u044C\u043D\u044B\u0439 \u0433\u0440\u0430\u0444 (\u0431\u0438\u043A\u043B\u0438\u043A\u0430) \u2014 \u0441\u043F\u0435\u0446\u0438\u0430\u043B\u044C\u043D\u044B\u0439 \u0432\u0438\u0434 \u0434\u0432\u0443\u0434\u043E\u043B\u044C\u043D\u043E\u0433\u043E \u0433\u0440\u0430\u0444\u0430, \u0443 \u043A\u043E\u0442\u043E\u0440\u043E\u0433\u043E \u043B\u044E\u0431\u0430\u044F \u0432\u0435\u0440\u0448\u0438\u043D\u0430 \u043F\u0435\u0440\u0432\u043E\u0439 \u0434\u043E\u043B\u0438 \u0441\u043E\u0435\u0434\u0438\u043D\u0435\u043D\u0430 \u0441\u043E \u0432\u0441\u0435\u043C\u0438 \u0432\u0435\u0440\u0448\u0438\u043D\u0430\u043C\u0438 \u0432\u0442\u043E\u0440\u043E\u0439 \u0434\u043E\u043B\u0438 \u0432\u0435\u0440\u0448\u0438\u043D."@ru . . . . . "\u041F\u043E\u043B\u043D\u044B\u0439 \u0434\u0432\u0443\u0434\u043E\u043B\u044C\u043D\u044B\u0439 \u0433\u0440\u0430\u0444"@ru . . "En th\u00E9orie des graphes, un graphe est dit biparti complet (ou encore est appel\u00E9 une biclique) s'il est biparti et chaque sommet du premier ensemble est reli\u00E9 \u00E0 tous les sommets du second ensemble. Plus pr\u00E9cis\u00E9ment, il existe une partition de son ensemble de sommets en deux sous-ensembles et telle que chaque sommet de est reli\u00E9 \u00E0 chaque sommet de [r\u00E9f. n\u00E9cessaire]. Si le premier ensemble est de cardinal m et le second ensemble est de cardinal n, le graphe biparti complet est not\u00E9 ."@fr . . "Complete bipartite graph"@en . . "In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set. Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of K\u00F6nigsberg. However, drawings of complete bipartite graphs were already printed as early as 1669, in connection with an edition of the works of Ramon Llull edited by Athanasius Kircher. Llull himself had made similar drawings of complete graphs three centuries earlier."@en . . . . . "In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set. Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of K\u00F6nigsberg. However, drawings of complete bipartite graphs were already printed as early as 1669, in connection with an edition of the works of Ramon Llull edited by Athanasius Kircher. Llull himself had made similar drawings of complete graphs three centuries earlier."@en . . . . "En komplett bipartit graf \u00E4r inom grafteori en s\u00E4rskild bipartit graf d\u00E4r varje nod i ena nodm\u00E4ngden \u00E4r ansluten till alla noder i den andra nodm\u00E4ngden."@sv . "Plena dukolora grafeo"@eo . . . . . . . "Grafo bipartito completo"@it . "\u5B8C\u51682\u90E8\u30B0\u30E9\u30D5"@ja . . "\u041F\u043E\u0432\u043D\u0438\u0439 \u0434\u0432\u043E\u0447\u0430\u0441\u0442\u043A\u043E\u0432\u0438\u0439 \u0433\u0440\u0430\u0444 (\u0431\u0456\u043A\u043B\u0456\u043A\u0430) \u2014 \u0441\u043F\u0435\u0446\u0456\u0430\u043B\u044C\u043D\u0438\u0439 \u0432\u0438\u0434 \u0434\u0432\u043E\u0447\u0430\u0441\u0442\u043A\u043E\u0432\u043E\u0433\u043E \u0433\u0440\u0430\u0444\u0430, \u0443 \u044F\u043A\u043E\u0433\u043E \u0431\u0443\u0434\u044C-\u044F\u043A\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0430 \u043F\u0435\u0440\u0448\u043E\u0457 \u0447\u0430\u0441\u0442\u043A\u0438 \u0437'\u0454\u0434\u043D\u0430\u043D\u0430 \u0437 \u0443\u0441\u0456\u043C\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0430\u043C\u0438 \u0434\u0440\u0443\u0433\u043E\u0457 \u0447\u0430\u0441\u0442\u043A\u0438 \u0432\u0435\u0440\u0448\u0438\u043D."@uk . . "\u00DApln\u00FD bipartitn\u00ED graf (tak\u00E9 \u00FApln\u00FD dvoud\u00EDln\u00FD graf nebo \u00FApln\u00FD sud\u00FD graf) je pojem z matematiky, z teorie graf\u016F. Rozum\u00ED se j\u00EDm takov\u00FD bipartitn\u00ED graf, do kter\u00E9ho ji\u017E nelze p\u0159idat \u017E\u00E1dnou hranu. Jeho vrcholy lze tedy rozd\u011Blit na dv\u011B disjunktn\u00ED mno\u017Einy a ka\u017Ed\u00FD vrchol z prvn\u00ED mno\u017Einy je spojen hranou s ka\u017Ed\u00FDm vrcholem z druh\u00E9 mno\u017Einy. Tyto grafy jsou a\u017E na isomorfismus ur\u010Deny jednozna\u010Dn\u011B po\u010Dtem vrchol\u016F obou mno\u017Ein a zna\u010D\u00ED se . Ot\u00E1zka rovinnosti \u00FApln\u00E9ho bipartitn\u00EDho grafu je j\u00E1drem \u00FAlohy o t\u0159ech domech a t\u0159ech studn\u00E1ch."@cs . . . . . . "En teoria de grafs un graf bipartit complet \u00E9s aquell graf bipartit en el qual tots els v\u00E8rtexs de la partici\u00F3 estan connectats a tots els v\u00E8rtexs de la partici\u00F3 i viceversa."@ca . . . . . . . . "\u5B8C\u51682\u90E8\u30B0\u30E9\u30D5\uFF08\u304B\u3093\u305C\u3093\u306B\u3076\u30B0\u30E9\u30D5\u3001\u82F1: complete bipartite graph\uFF09\u306F\u3001\u30B0\u30E9\u30D5\u7406\u8AD6\u306B\u304A\u3044\u3066\u30012\u90E8\u30B0\u30E9\u30D5\u306E\u3046\u3061\u7279\u306B\u7B2C1\u306E\u96C6\u5408\u306B\u5C5E\u3059\u308B\u305D\u308C\u305E\u308C\u306E\u9802\u70B9\u304B\u3089\u7B2C2\u306E\u96C6\u5408\u306B\u5C5E\u3059\u308B\u5168\u3066\u306E\u9802\u70B9\u306B\u8FBA\u304C\u4F38\u3073\u3066\u3044\u308B\u3082\u306E\u3092\u3044\u3046\u3002biclique\u3068\u3082\u3002"@ja . . "Graf bipartit complet"@ca . . "\u5B8C\u5168\u4E8C\u5206\u56FE"@zh .