. "Cyklotomisk karakt\u00E4r"@sv . . . . "6433"^^ . . . "1092536760"^^ . . "Cyclotomic character"@en . . . . "Inom matematiken \u00E4r en cyklotomisk karakt\u00E4r en av en Galoisgrupp som ger Galoisverkan p\u00E5 en grupp av enhetsr\u00F6tter. Som en endimensionell \u00F6ver en ring R \u00E4r dess i allm\u00E4nhet betecknad med R(1) (det vill s\u00E4ga den \u00E4r en representation \u03C7 : G \u2192 AutR(R(1)) \u2248 GL(1, R))."@sv . . "18846136"^^ . . . . . . . . . . . . . . . . . . . "In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1) (that is, it is a representation \u03C7 : G \u2192 AutR(R(1)) \u2248 GL(1, R))."@en . . . . . . "Inom matematiken \u00E4r en cyklotomisk karakt\u00E4r en av en Galoisgrupp som ger Galoisverkan p\u00E5 en grupp av enhetsr\u00F6tter. Som en endimensionell \u00F6ver en ring R \u00E4r dess i allm\u00E4nhet betecknad med R(1) (det vill s\u00E4ga den \u00E4r en representation \u03C7 : G \u2192 AutR(R(1)) \u2248 GL(1, R))."@sv . "\u5186\u5206\u6307\u6A19 (\u3048\u3093\u3076\u3093\u3057\u3072\u3087\u3046\u3000Cyclotomic_character\uFF09 In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1) (that is, it is a representation \u03C7 : G \u2192 AutR(R(1)) \u2248 GL(1, R))."@ja . . . . . . . "In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1) (that is, it is a representation \u03C7 : G \u2192 AutR(R(1)) \u2248 GL(1, R))."@en . "\u5186\u5206\u6307\u6A19 (\u3048\u3093\u3076\u3093\u3057\u3072\u3087\u3046\u3000Cyclotomic_character\uFF09 In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1) (that is, it is a representation \u03C7 : G \u2192 AutR(R(1)) \u2248 GL(1, R))."@ja . . . . . . . . "\u5186\u5206\u6307\u6A19"@ja . .