"\u53EF\u8FA8\u8BC6\u6027"@zh . . . . . "Identification (statistiques)"@fr . . . "1123293571"^^ . . . . . . . . . . . . . . . . . "10230"^^ . . . . . . . . "Identifiability"@en . . . . "En statistiques et en \u00E9conom\u00E9trie, l'identification (ou identifiabilit\u00E9) est une propri\u00E9t\u00E9 d'un mod\u00E8le statistique. En statistiques, on dit qu'un mod\u00E8le est identifiable s'il est possible d'apprendre la vraie valeur des param\u00E8tres \u00E0 partir d'un nombre infini d'observations."@fr . . "Als Identifizierbarkeit eines Modells bezeichnet man in der Statistik und insbesondere in der \u00D6konometrie die Eigenschaft von Sch\u00E4tzmodellen, dass Inferenzstatistik auf sie anwendbar ist. Ein Modell ist dann identifizierbar, wenn es theoretisch m\u00F6glich ist, die dem Modell zugrundeliegenden wahren Werte zu ermitteln, indem unendlich viele Beobachtungen gemacht wurden (gezogen wurden). Mathematisch bedeutet das, dass unterschiedliche Werte der Parameter des Modells unterschiedliche Wahrscheinlichkeitsfunktionen der beobachtbaren Variablen erzeugen. In der Praxis, wo endlich viele Beobachtungen vorliegen, ist die Identifizierbarkeit eines Modells durch die Anzahl der zu sch\u00E4tzenden Parameter, die Anzahl der Beobachtungen und Anzahl der damit verbundenen Freiheitsgrade beschr\u00E4nkt. Multikollinearit\u00E4t f\u00FChrt zu nicht identifizierbaren Parametern."@de . . . . . "In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions."@en . "In statistics, identifiability is a property which a model must satisfy for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions. A model that fails to be identifiable is said to be non-identifiable or unidentifiable: two or more parametrizations are observationally equivalent. In some cases, even though a model is non-identifiable, it is still possible to learn the true values of a certain subset of the model parameters. In this case we say that the model is partially identifiable. In other cases it may be possible to learn the location of the true parameter up to a certain finite region of the parameter space, in which case the model is set identifiable. Aside from strictly theoretical exploration of the model properties, identifiability can be referred to in a wider scope when a model is tested with experimental data sets, using identifiability analysis."@en . . "\u5728 \u7EDF\u8BA1\u5B66\u4E2D\uFF0C\u53EF\u8FA8\u8BC6\u662F\u4E00\u4E2A\u80FD\u591F\u66F4\u4E3A\u51C6\u786E\u63A8\u65AD\u7684\u6A21\u578B\u5FC5\u987B\u6EE1\u8DB3\u7684\u5C5E\u6027\u3002 \u4E00\u4E2A\u6A21\u578B\u662F\u53EF\u8FA8\u8BC6\u7684\uFF0C\u5982\u679C\u5B83\u5728\u7406\u8BBA\u4E0A\u80FD\u901A\u8FC7\u65E0\u9650\u7684\u89C2\u6D4B\u7ED3\u679C\u5B66\u4E60\u5230\u7684\u771F\u6B63\u8BE5\u6A21\u578B\u80CC\u540E\u53C2\u6570\u7684\u771F\u5B9E\u503C\u3002 \u5728\u6570\u5B66\u4E0A\uFF0C\u8FD9\u76F8\u5F53\u4E8E\u8BF4\u57FA\u4E8E\u8FD9\u4E9B\u89C2\u6D4B\u7ED3\u679C\u7684\u4E0D\u540C\u7684\u53C2\u6570\u503C\u5FC5\u987B\u4EA7\u751F\u4E0D\u540C\u7684\u6982\u7387\u5206\u5E03\u3002 \u901A\u5E38\u60C5\u51B5\u4E0B\uFF0C\u6A21\u578B\u53EA\u662F\u5728\u67D0\u4E9B\u60C5\u51B5\u4E0B\u662F\u53EF\u8BC6\u522B\u7684\uFF0C\u8FD9\u4E9B\u60C5\u51B5\u7684\u9650\u5B9A\u6761\u4EF6\u88AB\u79F0\u4E3A\u8BC6\u522B\u6761\u4EF6\u3002 \u4E00\u4E2A\u6A21\u578B\u662F\u4E0D\u53EF\u8BC6\u522B\u7684\uFF0C\u5982\u679C\uFF1A\u4E24\u4E2A\u6216\u4E24\u4E2A\u4EE5\u4E0A\u7684\u53C2\u6570\u5316\u662F\u89C2\u5BDF\u7B49\u4EF7\u7684\u3002 \u5728\u67D0\u4E9B\u60C5\u51B5\u4E0B\uFF0C\u5373\u4F7F\u4E00\u4E2A\u6A21\u578B\u662F\u4E0D\u53EF\u8BC6\u522B\u7684\uFF0C\u5B83\u4ECD\u7136\u53EF\u80FD\u5B66\u4E60\u5230\u67D0\u4E9B\u7279\u5B9A\u6A21\u578B\u53C2\u6570\u5B50\u96C6\u7684\u771F\u5B9E\u503C\u3002 \u5728\u8FD9\u79CD\u60C5\u51B5\u4E0B\uFF0C\u6211\u4EEC\u79F0\u8BE5\u6A21\u578B\u662F\u90E8\u5206\u5730\u53EF\u8BC6\u522B\u7684\u3002 \u5728\u5176\u4ED6\u60C5\u51B5\u4E0B\uFF0C\u6A21\u578B\u53EF\u80FD\u53EF\u4EE5\u5B66\u4E60\u5230\u53C2\u6570\u7A7A\u95F4\u4E2D\u4E00\u5B9A\u6709\u9650\u533A\u57DF\u7684\u771F\u7684\u53C2\u6570\u503C\uFF0C\u5728\u8FD9\u79CD\u60C5\u51B5\u4E0B\uFF0C\u8BE5\u6A21\u578B\u662F\u96C6\u5408\u53EF\u8BC6\u522B\u7684\u3002 \u9664\u4E86\u4E25\u683C\u7684\u7406\u8BBA\u63A2\u7D22\u6A21\u578B\u7684\u5C5E\u6027\uFF0C\u5F53\u4F7F\u7528\u53EF\u8BC6\u522B\u6027\u5206\u6790\u4F7F\u7528\u5B9E\u9A8C\u6570\u636E\u96C6\u68C0\u9A8C\u6A21\u578B\u65F6\uFF0C\u53EF\u8BC6\u522B\u6027\u53EF\u4EE5\u5728\u4E00\u4E2A\u66F4\u5BBD\u6CDB\u7684\u8303\u56F4\u5185\u88AB\u63D0\u53CA\u3002"@zh . "Als Identifizierbarkeit eines Modells bezeichnet man in der Statistik und insbesondere in der \u00D6konometrie die Eigenschaft von Sch\u00E4tzmodellen, dass Inferenzstatistik auf sie anwendbar ist. Ein Modell ist dann identifizierbar, wenn es theoretisch m\u00F6glich ist, die dem Modell zugrundeliegenden wahren Werte zu ermitteln, indem unendlich viele Beobachtungen gemacht wurden (gezogen wurden). Mathematisch bedeutet das, dass unterschiedliche Werte der Parameter des Modells unterschiedliche Wahrscheinlichkeitsfunktionen der beobachtbaren Variablen erzeugen."@de . . . "Identifizierbarkeit"@de . . . . "\u5728 \u7EDF\u8BA1\u5B66\u4E2D\uFF0C\u53EF\u8FA8\u8BC6\u662F\u4E00\u4E2A\u80FD\u591F\u66F4\u4E3A\u51C6\u786E\u63A8\u65AD\u7684\u6A21\u578B\u5FC5\u987B\u6EE1\u8DB3\u7684\u5C5E\u6027\u3002 \u4E00\u4E2A\u6A21\u578B\u662F\u53EF\u8FA8\u8BC6\u7684\uFF0C\u5982\u679C\u5B83\u5728\u7406\u8BBA\u4E0A\u80FD\u901A\u8FC7\u65E0\u9650\u7684\u89C2\u6D4B\u7ED3\u679C\u5B66\u4E60\u5230\u7684\u771F\u6B63\u8BE5\u6A21\u578B\u80CC\u540E\u53C2\u6570\u7684\u771F\u5B9E\u503C\u3002 \u5728\u6570\u5B66\u4E0A\uFF0C\u8FD9\u76F8\u5F53\u4E8E\u8BF4\u57FA\u4E8E\u8FD9\u4E9B\u89C2\u6D4B\u7ED3\u679C\u7684\u4E0D\u540C\u7684\u53C2\u6570\u503C\u5FC5\u987B\u4EA7\u751F\u4E0D\u540C\u7684\u6982\u7387\u5206\u5E03\u3002 \u901A\u5E38\u60C5\u51B5\u4E0B\uFF0C\u6A21\u578B\u53EA\u662F\u5728\u67D0\u4E9B\u60C5\u51B5\u4E0B\u662F\u53EF\u8BC6\u522B\u7684\uFF0C\u8FD9\u4E9B\u60C5\u51B5\u7684\u9650\u5B9A\u6761\u4EF6\u88AB\u79F0\u4E3A\u8BC6\u522B\u6761\u4EF6\u3002 \u4E00\u4E2A\u6A21\u578B\u662F\u4E0D\u53EF\u8BC6\u522B\u7684\uFF0C\u5982\u679C\uFF1A\u4E24\u4E2A\u6216\u4E24\u4E2A\u4EE5\u4E0A\u7684\u53C2\u6570\u5316\u662F\u89C2\u5BDF\u7B49\u4EF7\u7684\u3002 \u5728\u67D0\u4E9B\u60C5\u51B5\u4E0B\uFF0C\u5373\u4F7F\u4E00\u4E2A\u6A21\u578B\u662F\u4E0D\u53EF\u8BC6\u522B\u7684\uFF0C\u5B83\u4ECD\u7136\u53EF\u80FD\u5B66\u4E60\u5230\u67D0\u4E9B\u7279\u5B9A\u6A21\u578B\u53C2\u6570\u5B50\u96C6\u7684\u771F\u5B9E\u503C\u3002 \u5728\u8FD9\u79CD\u60C5\u51B5\u4E0B\uFF0C\u6211\u4EEC\u79F0\u8BE5\u6A21\u578B\u662F\u90E8\u5206\u5730\u53EF\u8BC6\u522B\u7684\u3002 \u5728\u5176\u4ED6\u60C5\u51B5\u4E0B\uFF0C\u6A21\u578B\u53EF\u80FD\u53EF\u4EE5\u5B66\u4E60\u5230\u53C2\u6570\u7A7A\u95F4\u4E2D\u4E00\u5B9A\u6709\u9650\u533A\u57DF\u7684\u771F\u7684\u53C2\u6570\u503C\uFF0C\u5728\u8FD9\u79CD\u60C5\u51B5\u4E0B\uFF0C\u8BE5\u6A21\u578B\u662F\u96C6\u5408\u53EF\u8BC6\u522B\u7684\u3002 \u9664\u4E86\u4E25\u683C\u7684\u7406\u8BBA\u63A2\u7D22\u6A21\u578B\u7684\u5C5E\u6027\uFF0C\u5F53\u4F7F\u7528\u53EF\u8BC6\u522B\u6027\u5206\u6790\u4F7F\u7528\u5B9E\u9A8C\u6570\u636E\u96C6\u68C0\u9A8C\u6A21\u578B\u65F6\uFF0C\u53EF\u8BC6\u522B\u6027\u53EF\u4EE5\u5728\u4E00\u4E2A\u66F4\u5BBD\u6CDB\u7684\u8303\u56F4\u5185\u88AB\u63D0\u53CA\u3002"@zh . "En statistiques et en \u00E9conom\u00E9trie, l'identification (ou identifiabilit\u00E9) est une propri\u00E9t\u00E9 d'un mod\u00E8le statistique. En statistiques, on dit qu'un mod\u00E8le est identifiable s'il est possible d'apprendre la vraie valeur des param\u00E8tres \u00E0 partir d'un nombre infini d'observations."@fr . . . . "22884398"^^ . . .