. . . . "\u5728\u6578\u5B78\u7684\u62D3\u64B2\u5B78\u4E2D\uFF0C\u6B78\u7D0D\u7DAD\u6578\u662F\u5C0D\u62D3\u64B2\u7A7A\u9593X\u5B9A\u7FA9\u7684\u5169\u7A2E\u7DAD\u6578\uFF0C\u5206\u5225\u70BA\u5C0F\u6B78\u7D0D\u7DAD\u6578ind(X)\u8207\u5927\u6B78\u7D0D\u7DAD\u6578Ind(X)\u3002\u5728n\u7DAD\u6B50\u5E7E\u91CC\u5F97\u7A7A\u9593Rn\u4E2D\uFF0C\u4E00\u500B\u7403\u7684\u908A\u754C\u662F\u6709n - 1\u7DAD\u7684\u7403\u9762\u3002\u4EE5\u9019\u500B\u89C0\u5BDF\u70BA\u57FA\u790E\uFF0C\u5229\u7528\u4E00\u500B\u7A7A\u9593\u4E2D\u9069\u5408\u7684\u958B\u96C6\u7684\u908A\u754C\u7DAD\u6578\uFF0C\u61C9\u7576\u53EF\u4EE5\u6B78\u7D0D\u5B9A\u7FA9\u51FA\u7A7A\u9593\u7684\u7DAD\u6578\u3002 \u9019\u5169\u7A2E\u7DAD\u6578\u662F\u53EA\u9760\u7A7A\u9593\u7684\u62D3\u64B2\u4F86\u5B9A\u7FA9\uFF0C\u7121\u9700\u7528\u5230\u7A7A\u9593\u7684\u5176\u4ED6\u6027\u8CEA\uFF08\u6BD4\u5982\u5EA6\u91CF\uFF09\u3002\u62D3\u64B2\u7A7A\u9593\u7684\u4E00\u822C\u5E38\u7528\u7DAD\u6578\u6709\u4E09\u7A2E\uFF0C\u6709\u5927\u5C0F\u6B78\u7D0D\u7DAD\u6578\uFF0C\u4EE5\u53CA\u52D2\u8C9D\u683C\u8986\u84CB\u7DAD\u6578\u3002\u901A\u5E38\u8AAA\u300C\u62D3\u64B2\u7DAD\u6578\u300D\u662F\u6307\u52D2\u8C9D\u683C\u8986\u84CB\u7DAD\u6578\u3002\u5C0D\u65BC\u300C\u8DB3\u5920\u597D\u300D\u7684\u7A7A\u9593\uFF0C\u9019\u4E09\u7A2E\u7DAD\u6578\u90FD\u76F8\u7B49\u3002"@zh . . . . . . . . "\u6570\u5B66\u306E\u4E00\u5206\u91CE\u3001\u4F4D\u76F8\u7A7A\u9593\u8AD6\u306B\u304A\u3051\u308B\u5E30\u7D0D\u6B21\u5143\uFF08\u304D\u306E\u3046\u3058\u3052\u3093\u3001\u82F1: inductive dimension\uFF09\u306F\u3001\u4F4D\u76F8\u7A7A\u9593 X \u306B\u5BFE\u3057\u3066\u3001\u5C0F\u3055\u3044\u5E30\u7D0D\u6B21\u5143 ind(X) \u3068\u5927\u304D\u3044\u5E30\u7D0D\u6B21\u5143 Ind(X) \u306E\u4E8C\u7A2E\u985E\u304C\u3042\u308B\u3002\u3053\u308C\u3089\u306F n-\u6B21\u5143\u30E6\u30FC\u30AF\u30EA\u30C3\u30C9\u7A7A\u9593 Rn \u306B\u304A\u3051\u308B (n \u2212 1)-\u6B21\u5143\u7403\u9762\uFF08\u3064\u307E\u308A\u3001n-\u6B21\u5143\u7403\u4F53\u306E\u5883\u754C\uFF09\u304C\u6B21\u5143 n \u2212 1 \u3092\u6301\u3064\u3068\u3044\u3046\u89B3\u70B9\u306B\u57FA\u3065\u304F\u3082\u306E\u3067\u3001\u9069\u5F53\u306A\u958B\u96C6\u5408\u306E\u5883\u754C\u306E\u6B21\u5143\u306B\u95A2\u3057\u3066\u5E30\u7D0D\u7684\u306B\u7A7A\u9593\u306E\u6B21\u5143\u3092\u5B9A\u7FA9\u3067\u304D\u308B\u3082\u306E\u3067\u306A\u3051\u308C\u3070\u306A\u3089\u306A\u3044\u3002 \u5C0F\u3055\u3044\u5E30\u7D0D\u6B21\u5143\u3068\u5927\u304D\u3044\u5E30\u7D0D\u6B21\u5143\u306F\u4F4D\u76F8\u7A7A\u9593\u306B\u5BFE\u3059\u308B\u300C\u6B21\u5143\u300D\u6982\u5FF5\u3092\u6349\u3048\u308B\u306E\u306B\u6700\u3082\u5229\u7528\u3055\u308C\u308B\u4E09\u3064\u306E\u65B9\u6CD5\u306E\u3046\u3061\u306E\u4E8C\u3064\u3067\u3001\uFF08\u8DDD\u96E2\u7A7A\u9593\u306A\u3069\u306E\u4F59\u5206\u306A\u6027\u8CEA\u306B\u4F9D\u5B58\u3059\u308B\u3053\u3068\u306A\u304F\uFF09\u305D\u306E\u4F4D\u76F8\u306E\u307F\u306B\u3088\u3063\u3066\u5B9A\u307E\u308B\u3002\u4E09\u3064\u306E\u3046\u3061\u5F8C\u4E00\u3064\u306F\u30EB\u30D9\u30FC\u30B0\u88AB\u8986\u6B21\u5143\u3067\u3042\u308B\uFF08\u300C\u4F4D\u76F8\u6B21\u5143\u300D\u3068\u8A00\u3048\u3070\u666E\u901A\u306F\u30EB\u30D9\u30FC\u30B0\u88AB\u8986\u6B21\u5143\u306E\u610F\u5473\u306B\u89E3\u3055\u308C\u308B\uFF09\u3002\u300C\u5341\u5206\u7D20\u6027\u306E\u3088\u3044\u300D\u7A7A\u9593\u306B\u5BFE\u3057\u3066\u306F\u3001\u3053\u308C\u3089\u4E09\u7A2E\u306E\u6B21\u5143\u6982\u5FF5\u306F\u4E00\u81F4\u3059\u308B\u3002"@ja . . . . . "In the mathematical field of topology, the inductive dimension of a topological space X is either of two values, the small inductive dimension ind(X) or the large inductive dimension Ind(X). These are based on the observation that, in n-dimensional Euclidean space Rn, (n \u2212 1)-dimensional spheres (that is, the boundaries of n-dimensional balls) have dimension n \u2212 1. Therefore it should be possible to define the dimension of a space inductively in terms of the dimensions of the boundaries of suitable open sets."@en . . . "3173612"^^ . "Bei der kleinen und gro\u00DFen induktiven Dimension handelt es sich um zwei im mathematischen Teilgebiet der Topologie betrachtete Dimensionsbegriffe. Diese Begriffe verwenden keinerlei algebraische Konstruktionen zur Festlegung einer Dimension, wie es etwa aus der Theorie der Vektorr\u00E4ume bekannt ist, sondern lediglich den betrachteten topologischen Raum selbst. Es handelt sich um eine Alternative zur Lebesgue\u2019schen \u00DCberdeckungsdimension, die mit bezeichnet und hier zu Vergleichszwecken herangezogen wird."@de . . . "\u6B78\u7D0D\u7DAD\u6578"@zh . "\u0418\u043D\u0434\u0443\u043A\u0442\u0438\u0432\u043D\u0430\u044F \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u044C \u2014 \u0442\u0438\u043F \u043E\u043F\u0440\u0435\u0434\u0435\u043B\u0435\u043D\u0438\u044F \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u0438 \u0442\u043E\u043F\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u043E\u0433\u043E \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432\u0430, \u043E\u0441\u043D\u043E\u0432\u0430\u043D\u043D\u044B\u0439 \u043D\u0430 \u043D\u0430\u0431\u043B\u044E\u0434\u0435\u043D\u0438\u0438, \u0447\u0442\u043E \u0441\u0444\u0435\u0440\u044B \u0432 \u0415\u0432\u043A\u043B\u0438\u0434\u043E\u0432\u043E\u043C \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432\u0435 \u0438\u043C\u0435\u044E\u0442 \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u044C \u043D\u0430 \u0435\u0434\u0438\u043D\u0438\u0446\u0443 \u043C\u0435\u043D\u044C\u0448\u0435. \u0421\u0443\u0449\u0435\u0441\u0442\u0432\u0443\u0435\u0442 \u0434\u0432\u0430 \u0432\u0430\u0440\u0438\u0430\u043D\u0442\u0430 \u043E\u043F\u0440\u0435\u0434\u0435\u043B\u0435\u043D\u0438\u044F \u0438\u043D\u0434\u0443\u043A\u0442\u0438\u0432\u043D\u043E\u0439 \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u0438, \u0442\u0430\u043A \u043D\u0430\u0437\u044B\u0432\u0430\u0435\u043C\u044B\u0435 \u0431\u043E\u043B\u044C\u0448\u0430\u044F \u0438 \u043C\u0430\u043B\u0430\u044F \u0438\u043D\u0434\u0443\u043A\u0442\u0438\u0432\u043D\u044B\u0435 \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u0438;\u0434\u043B\u044F \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432\u0430 \u043E\u043D\u0438 \u043E\u0431\u044B\u0447\u043D\u043E \u043E\u0431\u043E\u0437\u043D\u0430\u0447\u0430\u044E\u0442\u0441\u044F \u0438 \u0441\u043E\u043E\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0435\u043D\u043D\u043E.\u0412 \u0431\u043E\u043B\u044C\u0448\u0438\u043D\u0441\u0442\u0432\u0435 \u0442\u043E\u043F\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u0438\u0445 \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432 \u0432\u0441\u0442\u0440\u0435\u0447\u0430\u044E\u0449\u0438\u0445\u0441\u044F \u0432 \u043F\u0440\u0438\u043B\u043E\u0436\u0435\u043D\u0438\u044F\u0445 \u043E\u0431\u0435 \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u0438 \u0441\u043E\u0432\u043F\u0430\u0434\u0430\u044E\u0442, \u0438 \u043E\u043D\u0438 \u0442\u0430\u043A\u0436\u0435 \u0440\u0430\u0432\u043D\u044B \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u0438 \u041B\u0435\u0431\u0435\u0433\u0430."@ru . . "\u0418\u043D\u0434\u0443\u043A\u0442\u0438\u0432\u043D\u0430\u044F \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u044C \u2014 \u0442\u0438\u043F \u043E\u043F\u0440\u0435\u0434\u0435\u043B\u0435\u043D\u0438\u044F \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u0438 \u0442\u043E\u043F\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u043E\u0433\u043E \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432\u0430, \u043E\u0441\u043D\u043E\u0432\u0430\u043D\u043D\u044B\u0439 \u043D\u0430 \u043D\u0430\u0431\u043B\u044E\u0434\u0435\u043D\u0438\u0438, \u0447\u0442\u043E \u0441\u0444\u0435\u0440\u044B \u0432 \u0415\u0432\u043A\u043B\u0438\u0434\u043E\u0432\u043E\u043C \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432\u0435 \u0438\u043C\u0435\u044E\u0442 \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u044C \u043D\u0430 \u0435\u0434\u0438\u043D\u0438\u0446\u0443 \u043C\u0435\u043D\u044C\u0448\u0435. \u0421\u0443\u0449\u0435\u0441\u0442\u0432\u0443\u0435\u0442 \u0434\u0432\u0430 \u0432\u0430\u0440\u0438\u0430\u043D\u0442\u0430 \u043E\u043F\u0440\u0435\u0434\u0435\u043B\u0435\u043D\u0438\u044F \u0438\u043D\u0434\u0443\u043A\u0442\u0438\u0432\u043D\u043E\u0439 \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u0438, \u0442\u0430\u043A \u043D\u0430\u0437\u044B\u0432\u0430\u0435\u043C\u044B\u0435 \u0431\u043E\u043B\u044C\u0448\u0430\u044F \u0438 \u043C\u0430\u043B\u0430\u044F \u0438\u043D\u0434\u0443\u043A\u0442\u0438\u0432\u043D\u044B\u0435 \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u0438;\u0434\u043B\u044F \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432\u0430 \u043E\u043D\u0438 \u043E\u0431\u044B\u0447\u043D\u043E \u043E\u0431\u043E\u0437\u043D\u0430\u0447\u0430\u044E\u0442\u0441\u044F \u0438 \u0441\u043E\u043E\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0435\u043D\u043D\u043E.\u0412 \u0431\u043E\u043B\u044C\u0448\u0438\u043D\u0441\u0442\u0432\u0435 \u0442\u043E\u043F\u043E\u043B\u043E\u0433\u0438\u0447\u0435\u0441\u043A\u0438\u0445 \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432 \u0432\u0441\u0442\u0440\u0435\u0447\u0430\u044E\u0449\u0438\u0445\u0441\u044F \u0432 \u043F\u0440\u0438\u043B\u043E\u0436\u0435\u043D\u0438\u044F\u0445 \u043E\u0431\u0435 \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u0438 \u0441\u043E\u0432\u043F\u0430\u0434\u0430\u044E\u0442, \u0438 \u043E\u043D\u0438 \u0442\u0430\u043A\u0436\u0435 \u0440\u0430\u0432\u043D\u044B \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u0438 \u041B\u0435\u0431\u0435\u0433\u0430."@ru . "In the mathematical field of topology, the inductive dimension of a topological space X is either of two values, the small inductive dimension ind(X) or the large inductive dimension Ind(X). These are based on the observation that, in n-dimensional Euclidean space Rn, (n \u2212 1)-dimensional spheres (that is, the boundaries of n-dimensional balls) have dimension n \u2212 1. Therefore it should be possible to define the dimension of a space inductively in terms of the dimensions of the boundaries of suitable open sets. The small and large inductive dimensions are two of the three most usual ways of capturing the notion of \"dimension\" for a topological space, in a way that depends only on the topology (and not, say, on the properties of a metric space). The other is the Lebesgue covering dimension. The term \"topological dimension\" is ordinarily understood to refer to the Lebesgue covering dimension. For \"sufficiently nice\" spaces, the three measures of dimension are equal."@en . "\uC77C\uBC18\uC704\uC0C1\uC218\uD559\uC5D0\uC11C \uADC0\uB0A9\uC801 \uCC28\uC6D0(\u6B78\u7D0D\u7684\u6B21\u5143, \uC601\uC5B4: inductive dimension)\uC740 \uC5B4\uB5A4 \uAE30\uD558\uD559\uC801 \uB300\uC0C1\uC758 \uACBD\uACC4\uC758 \uCC28\uC6D0\uC774 \uC804\uCCB4\uC758 \uCC28\uC6D0\uBCF4\uB2E4 1\uB9CC\uD07C \uB354 \uC791\uB2E4\uB294 \uC0AC\uC2E4\uC744 \uAE30\uBC18\uC73C\uB85C \uD558\uB294, \uC704\uC0C1 \uACF5\uAC04 \uC704\uC5D0 \uC815\uC758\uB418\uB294 \uB450 \uAC1C\uC758 \uCC28\uC6D0 \uAC1C\uB150\uC774\uB2E4. \uB300\uBD80\uBD84\uC758 \uACBD\uC6B0, \uB974\uBCA0\uADF8 \uB36E\uAC1C \uCC28\uC6D0\uC758 \uC0C1\uD55C\uACFC \uD558\uD55C\uC744 \uC815\uC758\uD55C\uB2E4."@ko . "Inductive dimension"@en . . . . . "\uADC0\uB0A9\uC801 \uCC28\uC6D0"@ko . . "\uC77C\uBC18\uC704\uC0C1\uC218\uD559\uC5D0\uC11C \uADC0\uB0A9\uC801 \uCC28\uC6D0(\u6B78\u7D0D\u7684\u6B21\u5143, \uC601\uC5B4: inductive dimension)\uC740 \uC5B4\uB5A4 \uAE30\uD558\uD559\uC801 \uB300\uC0C1\uC758 \uACBD\uACC4\uC758 \uCC28\uC6D0\uC774 \uC804\uCCB4\uC758 \uCC28\uC6D0\uBCF4\uB2E4 1\uB9CC\uD07C \uB354 \uC791\uB2E4\uB294 \uC0AC\uC2E4\uC744 \uAE30\uBC18\uC73C\uB85C \uD558\uB294, \uC704\uC0C1 \uACF5\uAC04 \uC704\uC5D0 \uC815\uC758\uB418\uB294 \uB450 \uAC1C\uC758 \uCC28\uC6D0 \uAC1C\uB150\uC774\uB2E4. \uB300\uBD80\uBD84\uC758 \uACBD\uC6B0, \uB974\uBCA0\uADF8 \uB36E\uAC1C \uCC28\uC6D0\uC758 \uC0C1\uD55C\uACFC \uD558\uD55C\uC744 \uC815\uC758\uD55C\uB2E4."@ko . "\u0418\u043D\u0434\u0443\u043A\u0442\u0438\u0432\u043D\u0430\u044F \u0440\u0430\u0437\u043C\u0435\u0440\u043D\u043E\u0441\u0442\u044C"@ru . . . "5219"^^ . . "\u5E30\u7D0D\u6B21\u5143"@ja . . . "1091087314"^^ . . "\u6570\u5B66\u306E\u4E00\u5206\u91CE\u3001\u4F4D\u76F8\u7A7A\u9593\u8AD6\u306B\u304A\u3051\u308B\u5E30\u7D0D\u6B21\u5143\uFF08\u304D\u306E\u3046\u3058\u3052\u3093\u3001\u82F1: inductive dimension\uFF09\u306F\u3001\u4F4D\u76F8\u7A7A\u9593 X \u306B\u5BFE\u3057\u3066\u3001\u5C0F\u3055\u3044\u5E30\u7D0D\u6B21\u5143 ind(X) \u3068\u5927\u304D\u3044\u5E30\u7D0D\u6B21\u5143 Ind(X) \u306E\u4E8C\u7A2E\u985E\u304C\u3042\u308B\u3002\u3053\u308C\u3089\u306F n-\u6B21\u5143\u30E6\u30FC\u30AF\u30EA\u30C3\u30C9\u7A7A\u9593 Rn \u306B\u304A\u3051\u308B (n \u2212 1)-\u6B21\u5143\u7403\u9762\uFF08\u3064\u307E\u308A\u3001n-\u6B21\u5143\u7403\u4F53\u306E\u5883\u754C\uFF09\u304C\u6B21\u5143 n \u2212 1 \u3092\u6301\u3064\u3068\u3044\u3046\u89B3\u70B9\u306B\u57FA\u3065\u304F\u3082\u306E\u3067\u3001\u9069\u5F53\u306A\u958B\u96C6\u5408\u306E\u5883\u754C\u306E\u6B21\u5143\u306B\u95A2\u3057\u3066\u5E30\u7D0D\u7684\u306B\u7A7A\u9593\u306E\u6B21\u5143\u3092\u5B9A\u7FA9\u3067\u304D\u308B\u3082\u306E\u3067\u306A\u3051\u308C\u3070\u306A\u3089\u306A\u3044\u3002 \u5C0F\u3055\u3044\u5E30\u7D0D\u6B21\u5143\u3068\u5927\u304D\u3044\u5E30\u7D0D\u6B21\u5143\u306F\u4F4D\u76F8\u7A7A\u9593\u306B\u5BFE\u3059\u308B\u300C\u6B21\u5143\u300D\u6982\u5FF5\u3092\u6349\u3048\u308B\u306E\u306B\u6700\u3082\u5229\u7528\u3055\u308C\u308B\u4E09\u3064\u306E\u65B9\u6CD5\u306E\u3046\u3061\u306E\u4E8C\u3064\u3067\u3001\uFF08\u8DDD\u96E2\u7A7A\u9593\u306A\u3069\u306E\u4F59\u5206\u306A\u6027\u8CEA\u306B\u4F9D\u5B58\u3059\u308B\u3053\u3068\u306A\u304F\uFF09\u305D\u306E\u4F4D\u76F8\u306E\u307F\u306B\u3088\u3063\u3066\u5B9A\u307E\u308B\u3002\u4E09\u3064\u306E\u3046\u3061\u5F8C\u4E00\u3064\u306F\u30EB\u30D9\u30FC\u30B0\u88AB\u8986\u6B21\u5143\u3067\u3042\u308B\uFF08\u300C\u4F4D\u76F8\u6B21\u5143\u300D\u3068\u8A00\u3048\u3070\u666E\u901A\u306F\u30EB\u30D9\u30FC\u30B0\u88AB\u8986\u6B21\u5143\u306E\u610F\u5473\u306B\u89E3\u3055\u308C\u308B\uFF09\u3002\u300C\u5341\u5206\u7D20\u6027\u306E\u3088\u3044\u300D\u7A7A\u9593\u306B\u5BFE\u3057\u3066\u306F\u3001\u3053\u308C\u3089\u4E09\u7A2E\u306E\u6B21\u5143\u6982\u5FF5\u306F\u4E00\u81F4\u3059\u308B\u3002"@ja . "Induktive Dimension"@de . . . "Bei der kleinen und gro\u00DFen induktiven Dimension handelt es sich um zwei im mathematischen Teilgebiet der Topologie betrachtete Dimensionsbegriffe. Diese Begriffe verwenden keinerlei algebraische Konstruktionen zur Festlegung einer Dimension, wie es etwa aus der Theorie der Vektorr\u00E4ume bekannt ist, sondern lediglich den betrachteten topologischen Raum selbst. Es handelt sich um eine Alternative zur Lebesgue\u2019schen \u00DCberdeckungsdimension, die mit bezeichnet und hier zu Vergleichszwecken herangezogen wird."@de . . . . . . "\u5728\u6578\u5B78\u7684\u62D3\u64B2\u5B78\u4E2D\uFF0C\u6B78\u7D0D\u7DAD\u6578\u662F\u5C0D\u62D3\u64B2\u7A7A\u9593X\u5B9A\u7FA9\u7684\u5169\u7A2E\u7DAD\u6578\uFF0C\u5206\u5225\u70BA\u5C0F\u6B78\u7D0D\u7DAD\u6578ind(X)\u8207\u5927\u6B78\u7D0D\u7DAD\u6578Ind(X)\u3002\u5728n\u7DAD\u6B50\u5E7E\u91CC\u5F97\u7A7A\u9593Rn\u4E2D\uFF0C\u4E00\u500B\u7403\u7684\u908A\u754C\u662F\u6709n - 1\u7DAD\u7684\u7403\u9762\u3002\u4EE5\u9019\u500B\u89C0\u5BDF\u70BA\u57FA\u790E\uFF0C\u5229\u7528\u4E00\u500B\u7A7A\u9593\u4E2D\u9069\u5408\u7684\u958B\u96C6\u7684\u908A\u754C\u7DAD\u6578\uFF0C\u61C9\u7576\u53EF\u4EE5\u6B78\u7D0D\u5B9A\u7FA9\u51FA\u7A7A\u9593\u7684\u7DAD\u6578\u3002 \u9019\u5169\u7A2E\u7DAD\u6578\u662F\u53EA\u9760\u7A7A\u9593\u7684\u62D3\u64B2\u4F86\u5B9A\u7FA9\uFF0C\u7121\u9700\u7528\u5230\u7A7A\u9593\u7684\u5176\u4ED6\u6027\u8CEA\uFF08\u6BD4\u5982\u5EA6\u91CF\uFF09\u3002\u62D3\u64B2\u7A7A\u9593\u7684\u4E00\u822C\u5E38\u7528\u7DAD\u6578\u6709\u4E09\u7A2E\uFF0C\u6709\u5927\u5C0F\u6B78\u7D0D\u7DAD\u6578\uFF0C\u4EE5\u53CA\u52D2\u8C9D\u683C\u8986\u84CB\u7DAD\u6578\u3002\u901A\u5E38\u8AAA\u300C\u62D3\u64B2\u7DAD\u6578\u300D\u662F\u6307\u52D2\u8C9D\u683C\u8986\u84CB\u7DAD\u6578\u3002\u5C0D\u65BC\u300C\u8DB3\u5920\u597D\u300D\u7684\u7A7A\u9593\uFF0C\u9019\u4E09\u7A2E\u7DAD\u6578\u90FD\u76F8\u7B49\u3002"@zh . . . . . .