. "\u83AB\u6CD5\u7279\u5206\u5E03"@zh . . . "Moffat distribution"@en . . "22780508"^^ . "1696"^^ . . . . "The Moffat distribution, named after the physicist Anthony Moffat, is a continuous probability distribution based upon the Lorentzian distribution. Its particular importance in astrophysics is due to its ability to accurately reconstruct point spread functions, whose wings cannot be accurately portrayed by either a Gaussian or Lorentzian function."@en . . . . "\u83AB\u6CD5\u7279\u5206\u5E03\uFF08\u82F1\u8A9E\uFF1AMoffat distribution\uFF09\u662F\u4E00\u4E2A\u57FA\u4E8E\u6D1B\u4F26\u5179\u5206\u5E03\u7684\u8FDE\u7EED\u6982\u7387\u5206\u5E03\uFF0C\u4EE5\u52A0\u62FF\u5927\u5929\u6587\u5B66\u5BB6\uFF08\uFF09\u547D\u540D\u3002\u83AB\u6CD5\u7279\u5206\u5E03\u5728\u5929\u4F53\u7269\u7406\u4E0A\u80FD\u591F\u7CBE\u786E\u5730\u63CF\u8FF0\u70B9\u6269\u6563\u51FD\u6570\u3002\u5176\u4ED6\u5206\u5E03\u5982\u9AD8\u65AF\u5206\u5E03\u548C\u6D1B\u4F26\u5179\u5206\u5E03\u90FD\u65E0\u6CD5\u7CBE\u786E\u63CF\u8FF0\u70B9\u6269\u6563\u51FD\u6570\u5728\u4E24\u7FFC\u7684\u7279\u5F81\u3002"@zh . "\u83AB\u6CD5\u7279\u5206\u5E03\uFF08\u82F1\u8A9E\uFF1AMoffat distribution\uFF09\u662F\u4E00\u4E2A\u57FA\u4E8E\u6D1B\u4F26\u5179\u5206\u5E03\u7684\u8FDE\u7EED\u6982\u7387\u5206\u5E03\uFF0C\u4EE5\u52A0\u62FF\u5927\u5929\u6587\u5B66\u5BB6\uFF08\uFF09\u547D\u540D\u3002\u83AB\u6CD5\u7279\u5206\u5E03\u5728\u5929\u4F53\u7269\u7406\u4E0A\u80FD\u591F\u7CBE\u786E\u5730\u63CF\u8FF0\u70B9\u6269\u6563\u51FD\u6570\u3002\u5176\u4ED6\u5206\u5E03\u5982\u9AD8\u65AF\u5206\u5E03\u548C\u6D1B\u4F26\u5179\u5206\u5E03\u90FD\u65E0\u6CD5\u7CBE\u786E\u63CF\u8FF0\u70B9\u6269\u6563\u51FD\u6570\u5728\u4E24\u7FFC\u7684\u7279\u5F81\u3002"@zh . . . . . . . "1067300736"^^ . . . . . . . . . . . . . . "The Moffat distribution, named after the physicist Anthony Moffat, is a continuous probability distribution based upon the Lorentzian distribution. Its particular importance in astrophysics is due to its ability to accurately reconstruct point spread functions, whose wings cannot be accurately portrayed by either a Gaussian or Lorentzian function."@en . . . . .