"Unter Positionswinkel verstehen die Astronomen eine Richtungsangabe im \u00E4quatorialen Koordinatensystem (Rektaszension und Deklination), die sich auf die Richtung zum Nordpol des Himmels bezieht."@de . "In astronomy, position angle (usually abbreviated PA) is the convention for measuring angles on the sky. The International Astronomical Union defines it as the angle measured relative to the north celestial pole (NCP), turning positive into the direction of the right ascension. In the standard (non-flipped) images, this is a counterclockwise measure relative to the axis into the direction of positive declination. In the case of observed visual binary stars, it is defined as the angular offset of the secondary star from the primary relative to the north celestial pole. As the example illustrates, if one were observing a hypothetical binary star with a PA of 135\u00B0, that means an imaginary line in the eyepiece drawn from the north celestial pole to the primary (P) would be offset from the secondary (S) such that the NCP-P-S angle would be 135\u00B0. When graphing visual binaries, the NCP is, as in the illustration, normally drawn from the center point (origin) that is the Primary downward\u2013that is, with north at bottom\u2013and PA is measured counterclockwise. Also, the direction of the proper motion can, for example, be given by its position angle. The definition of position angle is also applied to extended objects like galaxies, where it refers to the angle made by the major axis of the object with the NCP line."@en . . "K\u0105t pozycyjny \u2013 k\u0105t u\u017Cywany w astronomii najcz\u0119\u015Bciej przy opisie gwiazd wizualnie podw\u00F3jnych. Definiuje si\u0119 go jako k\u0105t pomi\u0119dzy \u0142ukiem ko\u0142a godzinnego przechodz\u0105cym przez ja\u015Bniejszy sk\u0142adnik uk\u0142adu (1) i p\u00F3\u0142nocny biegun niebieski a \u0142ukiem ko\u0142a wielkiego na sferze niebieskiej \u0142\u0105cz\u0105cym ten sk\u0142adnik ze sk\u0142adnikiem s\u0142abszym (2). Znaj\u0105c rektascensj\u0119 i deklinacj\u0119 obu sk\u0142adnik\u00F3w k\u0105t pozycyjny P i odleg\u0142o\u015B\u0107 k\u0105tow\u0105 sk\u0142adnik\u00F3w d mo\u017Cna znale\u017A\u0107 z zale\u017Cno\u015Bci: K\u0105t pozycyjny wyznaczano pocz\u0105tkowo przy pomocy mikrometru pozycyjnego, obecnie mierzy si\u0119 go na kliszach fotograficznych lub ramkach CCD."@pl . "Pozi\u010Dn\u00ED \u00FAhel"@cs . . . . . . . . "\u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u0645\u0648\u0636\u0639"@ar . . . . . . . "\u041F\u043E\u0437\u0438\u0446\u0438\u043E\u043D\u043D\u044B\u0439 \u0443\u0433\u043E\u043B"@ru . . "L'angolo di posizione \u00E8 una grandezza astrofisica legata all'osservazione delle stelle binarie ottiche; \u00E8 definita come la distanza angolare (in gradi) della stella secondaria dalla primaria, rispetto al polo nord celeste, assumendo come direzione positiva quella dell'est. Per estensione, il termine indica anche, in campo astronomico, l'orientazione del piano equatoriale di un oggetto esteso, come una galassia o una nebulosa; si conviene di assumere come piano equatoriale quello lungo il quale si predispongono le isofote. In astronomia rappresenta l'angolo misurato sul bordo del disco di un corpo celeste partendo dal punto nord e procedendo verso est fino ad arrivare a quello stabilito. Nella topografia gli angoli di posizione si dividono in due categorie: orizzontali e verticali. Se prendiamo un piano orizzontale e consideriamo due semirette che sono la proiezione di due direzioni ed una di queste \u00E8 fissa, l'angolo considerato \u00E8 quello che questa semiretta deve percorrere in senso orario per sovrapporsi all'altra; e se la posizione fissa coincide con un meridiano (geografia) l'angolo si chiamer\u00E0 azimut. L'angolo di posizione \u00E8 un'indicazione di direzione nel cielo, rispetto alla direzione del polo nord celeste Se consideriamo un piano verticale gli angoli sono formati da due direzioni, se una direzione \u00E8 posta sullo zenit gli angoli sono detti zenitali, se invece una direzione \u00E8 orizzontale prendono il nome di inclinazione od altezza; se l'inclinazione risulta sopra quella orizzontale si dice angolo d'elevazione, se \u00E8 sotto di depressione. In pratica l'azimut, o angolo di posizione, indica l'angolo che separa un determinato punto dell'orizzonte dal nord geografico. Questo concetto \u00E8 rimasto tale per rilevamenti topografici, mentre altrimenti oggigiorno \u00E8 subentrato l'uso di misurarlo a partire dal sud geografico e procedendo verso ovest."@it . . . . . . "\u00C1ngulo de posici\u00F3n, generalmente abreviado AP, es una medida derivada de la observaci\u00F3n visual de estrellas binarias. Se define como el desplazamiento angular en grados de la estrella secundaria a la primaria, en relaci\u00F3n con el polo norte celeste. Como ilustra el ejemplo, si se observa una estrella binaria hipot\u00E9tica con un AP de 135 grados, lo que significa una l\u00EDnea imaginaria en el ocular elaborado desde el polo norte celeste (PNC) en el primario (P) se ver\u00EDa compensado desde el secundario (S) de tal manera que el \u00E1ngulo de PNC-P-S ser\u00EDa de 135 grados. Al graficar las \u00F3rbitas de visuales binarias, la l\u00EDnea de PNC se concibe tradicionalmente a la baja, es decir, con el norte en la parte inferior y el AP se mide en sentido antihorario, desde 0 a 359 grados. Tambi\u00E9n el \u00E1ngulo de movimiento propio (v\u00E9ase el movimiento propio) es a veces llamado el \u00E1ngulo de posici\u00F3n. La definici\u00F3n del \u00E1ngulo de posici\u00F3n es tambi\u00E9n ampliable a los objetos extendidos como las galaxias, donde se refiere al \u00E1ngulo formado por el eje mayor del objeto con la l\u00EDnea de PNC."@es . . . "1052624966"^^ . . . . "Position angle"@en . . . . "L'angolo di posizione \u00E8 una grandezza astrofisica legata all'osservazione delle stelle binarie ottiche; \u00E8 definita come la distanza angolare (in gradi) della stella secondaria dalla primaria, rispetto al polo nord celeste, assumendo come direzione positiva quella dell'est. Per estensione, il termine indica anche, in campo astronomico, l'orientazione del piano equatoriale di un oggetto esteso, come una galassia o una nebulosa; si conviene di assumere come piano equatoriale quello lungo il quale si predispongono le isofote."@it . . . "Angolo di posizione"@it . . . . . "\u0641\u064A \u0639\u0644\u0645 \u0627\u0644\u0641\u0644\u0643 \u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u0645\u0648\u0636\u0639 \u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u062A\u062E\u0627\u0637\u0644 (\u0628\u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629: Position angle)\u200F \u0648\u062A\u062E\u062A\u0635\u0631 \u0639\u0627\u062F\u0629 PA \u0647\u064A \u0627\u062A\u062C\u0627\u0647 \u0633\u0647\u0645 \u0648\u0647\u0645\u064A \u0641\u064A \u0627\u0644\u0633\u0645\u0627\u0621\u060C \u064A\u0642\u0627\u0633 \u0628\u0627\u0644\u062F\u0631\u062C\u0627\u062A \u0645\u0646 \u0627\u0644\u0634\u0645\u0627\u0644 \u0625\u0644\u0649 \u0627\u0644\u0634\u0631\u0642 . \u0648\u0627\u062A\u0641\u0627\u0642\u064A\u0629 \u0644\u0642\u064A\u0627\u0633 \u0627\u0644\u0632\u0648\u0627\u064A\u0627 \u0641\u064A \u0627\u0644\u0633\u0645\u0627\u0621 \u0641\u064A \u0639\u0644\u0645 \u0627\u0644\u0641\u0644\u0643 \u0627\u0644\u0631\u0635\u062F\u064A . \u0648\u0628\u062D\u0633\u0628 \u062A\u0639\u0631\u064A\u0641 \u0627\u0644\u0627\u062A\u062D\u0627\u062F \u0627\u0644\u0641\u0644\u0643\u064A \u0627\u0644\u062F\u0648\u0644\u064A \u0647\u064A \u0627\u0644\u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u0645\u0642\u0627\u0633\u0629 \u0639\u0643\u0633 \u0627\u062A\u062C\u0627\u0647 \u0639\u0642\u0627\u0631\u0628 \u0627\u0644\u0633\u0627\u0639\u0629 \u0628\u0627\u0644\u0646\u0633\u0628\u0629 \u0625\u0644\u0649 \u0627\u0644\u0642\u0637\u0628 \u0627\u0644\u0633\u0645\u0627\u0648\u064A \u0627\u0644\u0634\u0645\u0627\u0644\u064A. \u0641\u064A \u062D\u0627\u0644\u0629 \u0627\u0644\u0645\u0631\u0635\u0648\u062F\u0629\u060C \u064A\u062A\u0645 \u062A\u0639\u0631\u064A\u0641\u0647\u0627 \u0639\u0644\u0649 \u0623\u0646\u0647\u0627 \u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u0627\u0646\u062C\u0631\u0627\u0641 \u0644\u0644\u0646\u062C\u0645 \u0627\u0644\u062B\u0627\u0646\u0648\u064A \u0639\u0646 \u0627\u0644\u0631\u0626\u064A\u0633\u064A\u060C \u0648\u062A\u0642\u0627\u0633 \u0639\u0643\u0633 \u0627\u062A\u062C\u0627\u0647 \u0639\u0642\u0627\u0631\u0628 \u0627\u0644\u0633\u0627\u0639\u0629\u060C \u0646\u0633\u0628\u0629 \u0625\u0644\u0649 \u0627\u0644\u0642\u0637\u0628 \u0627\u0644\u0633\u0645\u0627\u0648\u064A \u0627\u0644\u0634\u0645\u0627\u0644\u064A.\u0648\u062A\u0637\u0628\u0642 \u0639\u0644\u0649 \u0627\u0644\u0645\u062C\u0631\u0629\u060C \u0648\u062A\u0642\u064A\u0633 \u0645\u064A\u0644 \u0627\u0644\u062C\u0631\u0645 \u0627\u0644\u0641\u0644\u0643\u064A\u060C \u0648\u0641\u064A \u0647\u0630\u0629 \u0627\u0644\u062D\u0627\u0644\u0629 \u0647\u064A \u0627\u0644\u0632\u0627\u0648\u064A\u0629 \u0628\u064A\u0646 \u0645\u062D\u0648\u0631 \u0627\u0644\u0645\u062C\u0631\u0629 \u0627\u0644\u0637\u0648\u064A\u0644 \u0648\u062E\u0637 \u0645\u0646 \u0645\u0631\u0643\u0632\u0647\u0627 \u064A\u062A\u062C\u0629 \u0634\u0645\u0627\u0644\u0627."@ar . "\u4F4D\u7F6E\u89D2\u662F\u6307\u8FC7\u5929\u7403\u4E0A\u4E00\u70B9\u7684\u4EFB\u610F\u5927\u5706\u4E0E\u8FC7\u8BE5\u70B9\u7684\u53C2\u8003\u5927\u5706\u6240\u4EA4\u7684\uFF0C\u901A\u5E38\u4EE5\u82F1\u6587\u7E2E\u5BEB\u8868\u793A\u70BAPA\uFF0C\u662F\u89C0\u6E2C\u806F\u661F\u5EF6\u4F38\u51FA\u4F86\u7684\u6E2C\u91CF\u3002\u5B83\u88AB\u5B9A\u7FA9\u70BA\u4F34\u661F\u76F8\u8F03\u65BC\u5929\u7403\u5317\u6975\u76F8\u5C0D\u65BC\u4E2D\u5FC3\u6046\u661F\u7684\u504F\u79FB\u89D2\u5EA6\u3002 \u5982\u5716\u4F8B\u6240\u793A\uFF0C\u5982\u679C\u67D0\u4EBA\u89C0\u6E2C\u5230\u4E00\u5C0D\u5047\u8A2D\u7684\u806F\u661F\u4F4D\u7F6E\u89D2\u662F135\u5EA6\uFF0C\u9019\u610F\u5473\u8457\uFF0C\u5728\u76EE\u93E1\u4E2D\u756B\u4E00\u689D\u5F9E\u4E3B\u661F(P)\u5230\u5929\u7403\u5317\u6975(NCP)\u7684\u5047\u60F3\u7DDA\uFF0C\u8207\u4F34\u661F(S)\u504F\u96E2\u7684\u89D2\u5EA6NCP-P-S\u5C07\u6703\u662F135\u5EA6\u3002 \u7576\u7E6A\u88FD\u806F\u661F\u7684\u8ECC\u9053\u5716\u6642\uFF0C\u50B3\u7D71\u4E0A\u90FD\u5C07NCP\u7DDA\u671D\u4E0B\u7E6A\u88FD\uFF0D\u5C31\u662F\u5317\u908A\u5728\u4E0B\u65B9\uFF0D\u800C\u4F4D\u7F6E\u89D2\u7684\u6E2C\u91CF\u662F\u9006\u6642\u91DD\u7684\uFF0C\u4EE50\u5EA6\u81F3359\u5EA6\u4F86\u5EA6\u91CF\u3002 \u540C\u6A23\u7684\uFF0C\u81EA\u884C\u89D2(\u53C3\u898B\u81EA\u884C)\u6709\u6642\u4E5F\u7A31\u70BA\u4F4D\u7F6E\u89D2\u3002 \u4F4D\u7F6E\u89D2\u7684\u5B9A\u7FA9\u4EA6\u64F4\u5F35\u9069\u7528\u81F3\u50CF\u662F\u661F\u7CFB\u7B49\uFF0C\u6CDB\u6307\u5929\u9AD4\u7684\u4E3B\u8EF8\u8207NCP\u7DDA\u6240\u5F62\u6210\u7684\u89D2\u5EA6\u3002"@zh . . . . . . . "K\u0105t pozycyjny"@pl . . . . . . "\u4F4D\u7F6E\u89D2\u662F\u6307\u8FC7\u5929\u7403\u4E0A\u4E00\u70B9\u7684\u4EFB\u610F\u5927\u5706\u4E0E\u8FC7\u8BE5\u70B9\u7684\u53C2\u8003\u5927\u5706\u6240\u4EA4\u7684\uFF0C\u901A\u5E38\u4EE5\u82F1\u6587\u7E2E\u5BEB\u8868\u793A\u70BAPA\uFF0C\u662F\u89C0\u6E2C\u806F\u661F\u5EF6\u4F38\u51FA\u4F86\u7684\u6E2C\u91CF\u3002\u5B83\u88AB\u5B9A\u7FA9\u70BA\u4F34\u661F\u76F8\u8F03\u65BC\u5929\u7403\u5317\u6975\u76F8\u5C0D\u65BC\u4E2D\u5FC3\u6046\u661F\u7684\u504F\u79FB\u89D2\u5EA6\u3002 \u5982\u5716\u4F8B\u6240\u793A\uFF0C\u5982\u679C\u67D0\u4EBA\u89C0\u6E2C\u5230\u4E00\u5C0D\u5047\u8A2D\u7684\u806F\u661F\u4F4D\u7F6E\u89D2\u662F135\u5EA6\uFF0C\u9019\u610F\u5473\u8457\uFF0C\u5728\u76EE\u93E1\u4E2D\u756B\u4E00\u689D\u5F9E\u4E3B\u661F(P)\u5230\u5929\u7403\u5317\u6975(NCP)\u7684\u5047\u60F3\u7DDA\uFF0C\u8207\u4F34\u661F(S)\u504F\u96E2\u7684\u89D2\u5EA6NCP-P-S\u5C07\u6703\u662F135\u5EA6\u3002 \u7576\u7E6A\u88FD\u806F\u661F\u7684\u8ECC\u9053\u5716\u6642\uFF0C\u50B3\u7D71\u4E0A\u90FD\u5C07NCP\u7DDA\u671D\u4E0B\u7E6A\u88FD\uFF0D\u5C31\u662F\u5317\u908A\u5728\u4E0B\u65B9\uFF0D\u800C\u4F4D\u7F6E\u89D2\u7684\u6E2C\u91CF\u662F\u9006\u6642\u91DD\u7684\uFF0C\u4EE50\u5EA6\u81F3359\u5EA6\u4F86\u5EA6\u91CF\u3002 \u540C\u6A23\u7684\uFF0C\u81EA\u884C\u89D2(\u53C3\u898B\u81EA\u884C)\u6709\u6642\u4E5F\u7A31\u70BA\u4F4D\u7F6E\u89D2\u3002 \u4F4D\u7F6E\u89D2\u7684\u5B9A\u7FA9\u4EA6\u64F4\u5F35\u9069\u7528\u81F3\u50CF\u662F\u661F\u7CFB\u7B49\uFF0C\u6CDB\u6307\u5929\u9AD4\u7684\u4E3B\u8EF8\u8207NCP\u7DDA\u6240\u5F62\u6210\u7684\u89D2\u5EA6\u3002"@zh . . . . "Unter Positionswinkel verstehen die Astronomen eine Richtungsangabe im \u00E4quatorialen Koordinatensystem (Rektaszension und Deklination), die sich auf die Richtung zum Nordpol des Himmels bezieht."@de . "L'angle de posici\u00F3 (abreviat AP) \u00E9s mesura astrof\u00EDsica lligada a l'observaci\u00F3 de les estrelles bin\u00E0ries \u00F2ptiques; es defineix com la dist\u00E0ncia angular (en graus) de l'estrella secund\u00E0ria de la prim\u00E0ria, respecte al pol nord celeste, assumint com a direcci\u00F3 positiva la de l'est. Per extensi\u00F3, el terme tamb\u00E9 indica, el camp astron\u00F2mic, l'orientaci\u00F3 del pla equatorial d'un objecte est\u00E8s, com una gal\u00E0xia o una nebulosa. En astronomia representa l'angle mesurat sobre el cant\u00F3 del disc d'un cos celeste partint del punt nord i seguint en direcci\u00F3 est fins a arribar al punt establert."@ca . . . "\u0641\u064A \u0639\u0644\u0645 \u0627\u0644\u0641\u0644\u0643 \u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u0645\u0648\u0636\u0639 \u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u062A\u062E\u0627\u0637\u0644 (\u0628\u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629: Position angle)\u200F \u0648\u062A\u062E\u062A\u0635\u0631 \u0639\u0627\u062F\u0629 PA \u0647\u064A \u0627\u062A\u062C\u0627\u0647 \u0633\u0647\u0645 \u0648\u0647\u0645\u064A \u0641\u064A \u0627\u0644\u0633\u0645\u0627\u0621\u060C \u064A\u0642\u0627\u0633 \u0628\u0627\u0644\u062F\u0631\u062C\u0627\u062A \u0645\u0646 \u0627\u0644\u0634\u0645\u0627\u0644 \u0625\u0644\u0649 \u0627\u0644\u0634\u0631\u0642 . \u0648\u0627\u062A\u0641\u0627\u0642\u064A\u0629 \u0644\u0642\u064A\u0627\u0633 \u0627\u0644\u0632\u0648\u0627\u064A\u0627 \u0641\u064A \u0627\u0644\u0633\u0645\u0627\u0621 \u0641\u064A \u0639\u0644\u0645 \u0627\u0644\u0641\u0644\u0643 \u0627\u0644\u0631\u0635\u062F\u064A . \u0648\u0628\u062D\u0633\u0628 \u062A\u0639\u0631\u064A\u0641 \u0627\u0644\u0627\u062A\u062D\u0627\u062F \u0627\u0644\u0641\u0644\u0643\u064A \u0627\u0644\u062F\u0648\u0644\u064A \u0647\u064A \u0627\u0644\u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u0645\u0642\u0627\u0633\u0629 \u0639\u0643\u0633 \u0627\u062A\u062C\u0627\u0647 \u0639\u0642\u0627\u0631\u0628 \u0627\u0644\u0633\u0627\u0639\u0629 \u0628\u0627\u0644\u0646\u0633\u0628\u0629 \u0625\u0644\u0649 \u0627\u0644\u0642\u0637\u0628 \u0627\u0644\u0633\u0645\u0627\u0648\u064A \u0627\u0644\u0634\u0645\u0627\u0644\u064A. \u0641\u064A \u062D\u0627\u0644\u0629 \u0627\u0644\u0645\u0631\u0635\u0648\u062F\u0629\u060C \u064A\u062A\u0645 \u062A\u0639\u0631\u064A\u0641\u0647\u0627 \u0639\u0644\u0649 \u0623\u0646\u0647\u0627 \u0632\u0627\u0648\u064A\u0629 \u0627\u0644\u0627\u0646\u062C\u0631\u0627\u0641 \u0644\u0644\u0646\u062C\u0645 \u0627\u0644\u062B\u0627\u0646\u0648\u064A \u0639\u0646 \u0627\u0644\u0631\u0626\u064A\u0633\u064A\u060C \u0648\u062A\u0642\u0627\u0633 \u0639\u0643\u0633 \u0627\u062A\u062C\u0627\u0647 \u0639\u0642\u0627\u0631\u0628 \u0627\u0644\u0633\u0627\u0639\u0629\u060C \u0646\u0633\u0628\u0629 \u0625\u0644\u0649 \u0627\u0644\u0642\u0637\u0628 \u0627\u0644\u0633\u0645\u0627\u0648\u064A \u0627\u0644\u0634\u0645\u0627\u0644\u064A.\u0648\u062A\u0637\u0628\u0642 \u0639\u0644\u0649 \u0627\u0644\u0645\u062C\u0631\u0629\u060C \u0648\u062A\u0642\u064A\u0633 \u0645\u064A\u0644 \u0627\u0644\u062C\u0631\u0645 \u0627\u0644\u0641\u0644\u0643\u064A\u060C \u0648\u0641\u064A \u0647\u0630\u0629 \u0627\u0644\u062D\u0627\u0644\u0629 \u0647\u064A \u0627\u0644\u0632\u0627\u0648\u064A\u0629 \u0628\u064A\u0646 \u0645\u062D\u0648\u0631 \u0627\u0644\u0645\u062C\u0631\u0629 \u0627\u0644\u0637\u0648\u064A\u0644 \u0648\u062E\u0637 \u0645\u0646 \u0645\u0631\u0643\u0632\u0647\u0627 \u064A\u062A\u062C\u0629 \u0634\u0645\u0627\u0644\u0627."@ar . "Angula situo estas loko de stelo sur \u0109ielo, mezurita je gradoj a\u016D je radianoj. \u011Ci estas uzata por priskribi duoblajn stelojn. Temas pri la angulo inter la linio formita de la du steloj kaj la linio \u011Dis la \u0109iela norda poluso."@eo . "\u00C1ngulo de posici\u00F3n, generalmente abreviado AP, es una medida derivada de la observaci\u00F3n visual de estrellas binarias. Se define como el desplazamiento angular en grados de la estrella secundaria a la primaria, en relaci\u00F3n con el polo norte celeste. Como ilustra el ejemplo, si se observa una estrella binaria hipot\u00E9tica con un AP de 135 grados, lo que significa una l\u00EDnea imaginaria en el ocular elaborado desde el polo norte celeste (PNC) en el primario (P) se ver\u00EDa compensado desde el secundario (S) de tal manera que el \u00E1ngulo de PNC-P-S ser\u00EDa de 135 grados."@es . "L'angle de posici\u00F3 (abreviat AP) \u00E9s mesura astrof\u00EDsica lligada a l'observaci\u00F3 de les estrelles bin\u00E0ries \u00F2ptiques; es defineix com la dist\u00E0ncia angular (en graus) de l'estrella secund\u00E0ria de la prim\u00E0ria, respecte al pol nord celeste, assumint com a direcci\u00F3 positiva la de l'est. Per extensi\u00F3, el terme tamb\u00E9 indica, el camp astron\u00F2mic, l'orientaci\u00F3 del pla equatorial d'un objecte est\u00E8s, com una gal\u00E0xia o una nebulosa. En astronomia representa l'angle mesurat sobre el cant\u00F3 del disc d'un cos celeste partint del punt nord i seguint en direcci\u00F3 est fins a arribar al punt establert. En topografia els angles de posici\u00F3 es divideixen en dues categories: horitzontals i verticals. Si s'agafa un pla horitzontal i es consideren dues semirectes que s\u00F3n la projecci\u00F3 de dues direccions i una d'elles \u00E9s fixa, l'angle considerat \u00E9s aquell que aquesta semirecta ha de rec\u00F3rrer en el sentit horari per sobreposar-se a l'altra; i si la posici\u00F3 fixa coincideix amb un meridi\u00E0 l'angle s'anomenar\u00E0 azimut. Si es considera un pla vertical, els angles es formen en dues direccions, si una direcci\u00F3 es posa sobre el zenit els angles s'anomenen zenitals, si per contra la direcci\u00F3 \u00E9s horitzonal, prenen el nom d'inclinaci\u00F3 o altura; si la inclinaci\u00F3 resulta sobre l'horitzontal, s'anomena angle d'elevaci\u00F3, i si \u00E9s a sota depressi\u00F3."@ca . "4206717"^^ . . . "Angula situo"@eo . . "Angula situo estas loko de stelo sur \u0109ielo, mezurita je gradoj a\u016D je radianoj. \u011Ci estas uzata por priskribi duoblajn stelojn. Temas pri la angulo inter la linio formita de la du steloj kaj la linio \u011Dis la \u0109iela norda poluso."@eo . . . "En astronomie, l'angle de position (en anglais position angle, abr\u00E9g\u00E9 en PA) est une mesure d'angle utilis\u00E9e pour d\u00E9crire les \u00E9toiles binaires visuelles. Il est d\u00E9fini comme l'\u00E9cart angulaire (habitiellement exprim\u00E9 en degr\u00E9s) de l'\u00E9toile secondaire \u00E0 la primaire par rapport au p\u00F4le nord c\u00E9leste. Comme le montre le sch\u00E9ma, si on observe une \u00E9toile binaire ayant un angle de position de 135 degr\u00E9s, cela signifie que, dans l'oculaire, une ligne imaginaire allant de la primaire (P) vers le p\u00F4le nord c\u00E9leste (NCP) serait \u00E9cart\u00E9e de la secondaire (S) tel que l'angle NCP-P-S soit \u00E9gal \u00E0 135 degr\u00E9s."@fr . . . "Angle de posici\u00F3"@ca . "11105"^^ . "\u041F\u043E\u0437\u0438\u0446\u0438\u043E\u043D\u043D\u044B\u0439 \u0443\u0433\u043E\u043B (\u0447\u0430\u0441\u0442\u043E \u043E\u0431\u043E\u0437\u043D\u0430\u0447\u0430\u0435\u0442\u0441\u044F PA, \u043E\u0442 \u0430\u043D\u0433\u043B. Positional angle) \u2014 \u0443\u0433\u043E\u043B \u043C\u0435\u0436\u0434\u0443 \u043B\u0438\u043D\u0438\u0435\u0439, \u0441\u043E\u0435\u0434\u0438\u043D\u044F\u044E\u0449\u0435\u0439 \u0434\u0432\u0430 \u0441\u0432\u0435\u0442\u0438\u043B\u0430 (\u043D\u0430\u043F\u0440\u0438\u043C\u0435\u0440 \u0441\u043E\u0441\u0442\u0430\u0432\u043B\u044F\u044E\u0449\u0438\u0435 \u0434\u0432\u043E\u0439\u043D\u043E\u0439 \u0437\u0432\u0435\u0437\u0434\u044B), \u0438 \u043A\u0440\u0443\u0433\u043E\u043C \u0441\u043A\u043B\u043E\u043D\u0435\u043D\u0438\u0439, \u043F\u0440\u043E\u0445\u043E\u0434\u044F\u0449\u0438\u043C \u0447\u0435\u0440\u0435\u0437 \u043E\u0434\u043D\u043E \u0438\u0437 \u043D\u0438\u0445. \u0421\u0447\u0438\u0442\u0430\u0435\u0442\u0441\u044F \u043E\u0442 \u0442\u043E\u0447\u043A\u0438 \u0441\u0435\u0432\u0435\u0440\u0430 \u0447\u0435\u0440\u0435\u0437 \u0432\u043E\u0441\u0442\u043E\u043A, \u044E\u0433, \u0437\u0430\u043F\u0430\u0434, \u0438\u0437\u043C\u0435\u043D\u044F\u0435\u0442\u0441\u044F \u043E\u0442 0\u00B0 \u0434\u043E 360\u00B0 (\u0437\u0430\u0447\u0430\u0441\u0442\u0443\u044E \u0438\u0437\u043C\u0435\u0440\u044F\u0435\u0442\u0441\u044F \u0432 \u0440\u0430\u0434\u0438\u0430\u043D\u0430\u0445 ). \u0418\u0437\u043C\u0435\u0440\u0435\u043D\u0438\u0435 \u043F\u0440\u043E\u0432\u043E\u0434\u044F\u0442, \u043D\u0430\u043F\u0440\u0438\u043C\u0435\u0440, \u043F\u043E\u0437\u0438\u0446\u0438\u043E\u043D\u043D\u044B\u043C \u043C\u0438\u043A\u0440\u043E\u043C\u0435\u0442\u0440\u043E\u043C, \u0433\u0435\u043B\u0438\u043E\u043C\u0435\u0442\u0440\u043E\u043C."@ru . "\u00C1ngulo de posici\u00F3n"@es . . . "Angle de position"@fr . . "\u041F\u043E\u0437\u0438\u0446\u0438\u043E\u043D\u043D\u044B\u0439 \u0443\u0433\u043E\u043B (\u0447\u0430\u0441\u0442\u043E \u043E\u0431\u043E\u0437\u043D\u0430\u0447\u0430\u0435\u0442\u0441\u044F PA, \u043E\u0442 \u0430\u043D\u0433\u043B. Positional angle) \u2014 \u0443\u0433\u043E\u043B \u043C\u0435\u0436\u0434\u0443 \u043B\u0438\u043D\u0438\u0435\u0439, \u0441\u043E\u0435\u0434\u0438\u043D\u044F\u044E\u0449\u0435\u0439 \u0434\u0432\u0430 \u0441\u0432\u0435\u0442\u0438\u043B\u0430 (\u043D\u0430\u043F\u0440\u0438\u043C\u0435\u0440 \u0441\u043E\u0441\u0442\u0430\u0432\u043B\u044F\u044E\u0449\u0438\u0435 \u0434\u0432\u043E\u0439\u043D\u043E\u0439 \u0437\u0432\u0435\u0437\u0434\u044B), \u0438 \u043A\u0440\u0443\u0433\u043E\u043C \u0441\u043A\u043B\u043E\u043D\u0435\u043D\u0438\u0439, \u043F\u0440\u043E\u0445\u043E\u0434\u044F\u0449\u0438\u043C \u0447\u0435\u0440\u0435\u0437 \u043E\u0434\u043D\u043E \u0438\u0437 \u043D\u0438\u0445. \u0421\u0447\u0438\u0442\u0430\u0435\u0442\u0441\u044F \u043E\u0442 \u0442\u043E\u0447\u043A\u0438 \u0441\u0435\u0432\u0435\u0440\u0430 \u0447\u0435\u0440\u0435\u0437 \u0432\u043E\u0441\u0442\u043E\u043A, \u044E\u0433, \u0437\u0430\u043F\u0430\u0434, \u0438\u0437\u043C\u0435\u043D\u044F\u0435\u0442\u0441\u044F \u043E\u0442 0\u00B0 \u0434\u043E 360\u00B0 (\u0437\u0430\u0447\u0430\u0441\u0442\u0443\u044E \u0438\u0437\u043C\u0435\u0440\u044F\u0435\u0442\u0441\u044F \u0432 \u0440\u0430\u0434\u0438\u0430\u043D\u0430\u0445 ). \u0418\u0437\u043C\u0435\u0440\u0435\u043D\u0438\u0435 \u043F\u0440\u043E\u0432\u043E\u0434\u044F\u0442, \u043D\u0430\u043F\u0440\u0438\u043C\u0435\u0440, \u043F\u043E\u0437\u0438\u0446\u0438\u043E\u043D\u043D\u044B\u043C \u043C\u0438\u043A\u0440\u043E\u043C\u0435\u0442\u0440\u043E\u043C, \u0433\u0435\u043B\u0438\u043E\u043C\u0435\u0442\u0440\u043E\u043C."@ru . "In astronomy, position angle (usually abbreviated PA) is the convention for measuring angles on the sky. The International Astronomical Union defines it as the angle measured relative to the north celestial pole (NCP), turning positive into the direction of the right ascension. In the standard (non-flipped) images, this is a counterclockwise measure relative to the axis into the direction of positive declination. In the case of observed visual binary stars, it is defined as the angular offset of the secondary star from the primary relative to the north celestial pole."@en . "K\u0105t pozycyjny \u2013 k\u0105t u\u017Cywany w astronomii najcz\u0119\u015Bciej przy opisie gwiazd wizualnie podw\u00F3jnych. Definiuje si\u0119 go jako k\u0105t pomi\u0119dzy \u0142ukiem ko\u0142a godzinnego przechodz\u0105cym przez ja\u015Bniejszy sk\u0142adnik uk\u0142adu (1) i p\u00F3\u0142nocny biegun niebieski a \u0142ukiem ko\u0142a wielkiego na sferze niebieskiej \u0142\u0105cz\u0105cym ten sk\u0142adnik ze sk\u0142adnikiem s\u0142abszym (2). Znaj\u0105c rektascensj\u0119 i deklinacj\u0119 obu sk\u0142adnik\u00F3w k\u0105t pozycyjny P i odleg\u0142o\u015B\u0107 k\u0105tow\u0105 sk\u0142adnik\u00F3w d mo\u017Cna znale\u017A\u0107 z zale\u017Cno\u015Bci: K\u0105t pozycyjny wyznaczano pocz\u0105tkowo przy pomocy mikrometru pozycyjnego, obecnie mierzy si\u0119 go na kliszach fotograficznych lub ramkach CCD."@pl . . "En astronomie, l'angle de position (en anglais position angle, abr\u00E9g\u00E9 en PA) est une mesure d'angle utilis\u00E9e pour d\u00E9crire les \u00E9toiles binaires visuelles. Il est d\u00E9fini comme l'\u00E9cart angulaire (habitiellement exprim\u00E9 en degr\u00E9s) de l'\u00E9toile secondaire \u00E0 la primaire par rapport au p\u00F4le nord c\u00E9leste. Comme le montre le sch\u00E9ma, si on observe une \u00E9toile binaire ayant un angle de position de 135 degr\u00E9s, cela signifie que, dans l'oculaire, une ligne imaginaire allant de la primaire (P) vers le p\u00F4le nord c\u00E9leste (NCP) serait \u00E9cart\u00E9e de la secondaire (S) tel que l'angle NCP-P-S soit \u00E9gal \u00E0 135 degr\u00E9s. Quand on repr\u00E9sente les orbites des binaires visuelles, la ligne NCP est traditionnellement dirig\u00E9e vers le bas \u2014 c'est-\u00E0-dire avec le nord en bas \u2014 et l'angle de position est mesur\u00E9 dans le sens anti-horaire, de 0 \u00E0 360 degr\u00E9s. L'angle du mouvement propre (voir mouvement propre) est parfois appel\u00E9 angle de position. L'angle de position est \u00E9galement utilis\u00E9 pour d\u00E9crire les objets \u00E9tendus comme les galaxies, o\u00F9 il correspond \u00E0 l'angle fait par le grand-axe de l'objet avec la ligne NCP du p\u00F4le nord c\u00E9leste."@fr . . . "Positionswinkel"@de . . . . "\u4F4D\u7F6E\u89D2"@zh . .