"Significant figures (also known as the significant digits, precision or resolution) of a number in positional notation are digits in the number that are reliable and necessary to indicate the quantity of something. If a number expressing the result of a measurement (e.g., length, pressure, volume, or mass) has more digits than the number of digits allowed by the measurement resolution, then only as many digits as allowed by the measurement resolution are reliable, and so only these can be significant figures. The following digits are not significant figures."@en . . "\u0623\u0647\u0645\u064A\u0629 \u0631\u0642\u0645 \u0645\u0643\u062A\u0648\u0628 \u0628\u0627\u0644\u062A\u062F\u0648\u064A\u0646 \u0627\u0644\u0645\u0648\u0636\u0639\u064A \u0647\u064A \u0642\u064A\u0645\u0629 \u0627\u0644\u0631\u0642\u0645 \u062D\u0633\u0628 \u0645\u0648\u0642\u0639\u0647. \u064A\u062A\u0636\u0645\u0646 \u0647\u0630\u0627 \u062C\u0645\u064A\u0639 \u0627\u0644\u0623\u0631\u0642\u0627\u0645 \u0628\u0627\u0633\u062A\u062B\u0646\u0627\u0621: \n* \u0643\u0644 \u0627\u0644\u0623\u0635\u0641\u0627\u0631 \u0627\u0644\u0628\u0627\u062F\u0626\u0629. \u0639\u0644\u0649 \u0633\u0628\u064A\u0644 \u0627\u0644\u0645\u062B\u0627\u0644\u060C \u064A\u062D\u062A\u0648\u064A \"013\" \u0639\u0644\u0649 \u0631\u0642\u0645\u064A\u0646 \u0645\u0639\u0646\u0648\u064A\u064A\u0646: 1 \u06483. \n* \u0627\u0644\u0623\u0635\u0641\u0627\u0631 \u0627\u0644\u0632\u0627\u0626\u062F\u0629 \u0639\u0646\u062F\u0645\u0627 \u062A\u0643\u0648\u0646 \u0645\u062C\u0631\u062F \u0639\u0646\u0627\u0635\u0631 \u0646\u0627\u0626\u0628\u0629 \u0644\u0644\u0625\u0634\u0627\u0631\u0629 \u0625\u0644\u0649 \u0645\u0642\u064A\u0627\u0633 \u0627\u0644\u0639\u062F\u062F. \u0639\u0644\u0649 \u0633\u0628\u064A\u0644 \u0627\u0644\u0645\u062B\u0627\u0644\u060C \"26.9000\". \n* \u0627\u0644\u0623\u0631\u0642\u0627\u0645 \u0627\u0644\u0632\u0627\u0626\u0641\u0629. \u0639\u0644\u0649 \u0633\u0628\u064A\u0644 \u0627\u0644\u0645\u062B\u0627\u0644\u060C \u0645\u0646 \u062E\u0644\u0627\u0644 \u0627\u0644\u062D\u0633\u0627\u0628\u0627\u062A \u0627\u0644\u062A\u064A \u062A\u0645 \u0625\u062C\u0631\u0627\u0624\u0647\u0627 \u0628\u062F\u0642\u0629 \u0623\u0643\u0628\u0631 \u0645\u0646 \u062F\u0642\u0629 \u0627\u0644\u0628\u064A\u0627\u0646\u0627\u062A \u0627\u0644\u0623\u0635\u0644\u064A\u0629\u060C \u0623\u0648 \u0627\u0644\u0642\u064A\u0627\u0633\u0627\u062A \u0627\u0644\u062A\u064A \u062A\u0645 \u0627\u0644\u0625\u0628\u0644\u0627\u063A \u0639\u0646\u0647\u0627 \u0628\u062F\u0642\u0629 \u0623\u0643\u0628\u0631 \u0645\u0646 \u0627\u0644\u062A\u064A \u062A\u062F\u0639\u0645\u0647\u0627 \u0627\u0644\u0645\u0639\u062F\u0627\u062A."@ar . . . . . "\uC720\uD6A8\uC22B\uC790"@ko . . . . . . . . "Algarismo significativo"@pt . "\u6709\u6548\u6570\u5B57"@zh . "Significant figures"@en . . . . . . "Cifras significativas"@es . . . . . . . "Le nombre de chiffres significatifs indique la pr\u00E9cision d'une mesure physique. Il s'agit des chiffres connus avec certitude ou compris dans un intervalle d'incertitude. La pr\u00E9cision (ou l'incertitude) avec laquelle on conna\u00EEt la valeur d'une grandeur d\u00E9pend du mesurage (ensemble d'op\u00E9rations ayant pour but de d\u00E9terminer la valeur d'une grandeur). Exemple : 12 345 a cinq chiffres significatifs. Le premier chiffre incertain est le 5."@fr . "Las cifras significativas de una medida son las que aportan alguna informaci\u00F3n.\u200B Representan el uso de una o m\u00E1s escalas de incertidumbre en determinadas aproximaciones. Por ejemplo, se dice que 4,7 tiene dos cifras significativas, mientras que 4,07 tiene tres. \n* Primera: si se necesita expresar una medida con tres cifras significativas, a la tercera cifra se le incrementa un n\u00FAmero si el que le sigue es mayor que 5 o si es 5 seguido de otras cifras diferentes de cero. \n* Tercera: cuando a la cifra a redondear le sigue un 5 , siempre se redondea hacia arriba."@es . . . . "Cyfry znacz\u0105ce, cyfry warto\u015Bciowe \u2013 cyfry rozwini\u0119cia dziesi\u0119tnego mierzonej wielko\u015Bci fizycznej, pocz\u0105wszy od pierwszej cyfry niezerowej a\u017C do ostatniej cyfry, kt\u00F3rej warto\u015B\u0107 nie zmienia si\u0119 wewn\u0105trz przyj\u0119tego przedzia\u0142u ufno\u015Bci.[wymaga weryfikacji?] Przyk\u0142ad: W wyniku pomiaru okre\u015Blono warto\u015B\u0107 napi\u0119cia na 0,001 023 41 V, przy czym dok\u0142adno\u015B\u0107 pomiaru wynosi \u00B10,000 003 V. Wiemy zatem, \u017Ce mierzone napi\u0119cie zawiera si\u0119 w przedziale ufno\u015Bci (0,001 020 41 V; 0,001 026 41 V) Mamy zatem trzy cyfry znacz\u0105ce: 0,001 02 V."@pl . . "\u0417\u043D\u0430\u0447\u0443\u0449\u0456 \u0446\u0438\u0444\u0440\u0438"@uk . . "Las cifras significativas de una medida son las que aportan alguna informaci\u00F3n.\u200B Representan el uso de una o m\u00E1s escalas de incertidumbre en determinadas aproximaciones. Por ejemplo, se dice que 4,7 tiene dos cifras significativas, mientras que 4,07 tiene tres. \n* Primera: si se necesita expresar una medida con tres cifras significativas, a la tercera cifra se le incrementa un n\u00FAmero si el que le sigue es mayor que 5 o si es 5 seguido de otras cifras diferentes de cero. Ejemplo: 53,6501 consta de 6 cifras y para escribirlo con 3 queda 53,7; aunque al 5 le sigue un cero, luego sigue un 1 por lo que no se puede considerar que al 5 le siga cero (01 no es igual a 0). \n* Segunda: siguiendo el mismo ejemplo de tres cifras significativas: si la cuarta cifra es menor de 5, el tercer d\u00EDgito se deja igual. Ejemplo: 53,649 consta de cinco cifras, como se necesitan 3 el 6 queda igual ya que la cifra que le sigue es menor de 5; por lo que queda 53,6. \n* Tercera: cuando a la cifra a redondear le sigue un 5 , siempre se redondea hacia arriba. Ejemplo: si el n\u00FAmero es 3,7500 se redondear\u00EDa a 3,8.\u200B El uso de estas considera que el \u00FAltimo d\u00EDgito de aproximaci\u00F3n es incierto, por ejemplo, al determinar el volumen de un l\u00EDquido con una probeta cuya resoluci\u00F3n es de 1ml, implica una escala de incertidumbre de 0,5 ml. As\u00ED se puede decir que el volumen de 6 ml ser\u00E1 realmente de 5,5ml a 6,5ml. El volumen anterior se representar\u00E1 entonces como (6,0 \u00B1 0,5) ml. En caso de determinar valores m\u00E1s pr\u00F3ximos se tendr\u00EDan que utilizar otros instrumentos de mayor resoluci\u00F3n, por ejemplo, una probeta de divisiones m\u00E1s finas y as\u00ED obtener (6,0 \u00B1 0,1) ml o algo m\u00E1s satisfactorio seg\u00FAn la resoluci\u00F3n requerida."@es . "\u010C\u00EDslice \u010D\u00EDsla se naz\u00FDvaj\u00ED platn\u00E1 m\u00EDsta, jestli\u017Ee se p\u0159edpokl\u00E1d\u00E1, \u017Ee odpov\u00EDdaj\u00EDc\u00ED \u010D\u00EDslo le\u017E\u00ED mezi hranicemi chyby posledn\u00ED \u010D\u00EDslice. P\u0159\u00EDklady: Z\u00E1pisu se dv\u011Bma platn\u00FDmi m\u00EDsty vyhovuje ka\u017Ed\u00E9 \u010D\u00EDslo mezi 2 050 a 2 150. Z\u00E1pisu se \u010Dty\u0159mi platn\u00FDmi m\u00EDsty vyhovuje ka\u017Ed\u00E9 \u010D\u00EDslo mezi 409,95 a 410,05. Jde-li o \u00FAdaje veli\u010Din s norm\u00E1ln\u00EDm rozd\u011Blen\u00EDm s p\u0159idru\u017Eenou , doporu\u010Duje se v\u00FDhodn\u011Bj\u0161\u00ED (a obecn\u011Bj\u0161\u00ED) z\u00E1pis t\u011Bchto hodnot ve tvaru ; resp. . V takov\u00E9m z\u00E1pisu veli\u010Diny, nap\u0159. d\u00E9lky, ve tvaru m znamen\u00E1 d\u00E9lku v metrech, \u010D\u00EDselnou hodnotu a standardn\u00ED nejistotu vyj\u00E1d\u0159enou pomoc\u00ED posledn\u00EDho platn\u00E9ho m\u00EDsta v . m"@cs . "D\u00EDgit significatiu \u00E9s la xifra que t\u00E9 significat per a un c\u00E0lcul concret. Quan un nombre t\u00E9 molts decimals, molts d\u00EDgits, no s'usen tots en els c\u00E0lculs sin\u00F3 que tan sols es prenen aquells que permetin expressar els resultats d'una manera correcta i tenint en compte que sempre hi haur\u00E0 el mateix error de c\u00E0lcul. Normalment, s'agafen els dos primers decimals, tenint en compte que el segon s'arrodoneix. L'arrodoniment d'aquest segon decimal es fa de la manera seg\u00FCent:"@ca . . . . . . . . "Angka signifikan"@in . . . . "Platn\u00E9 \u010D\u00EDslice"@cs . . "Zifra esanguratsu"@eu . . . "\u010C\u00EDslice \u010D\u00EDsla se naz\u00FDvaj\u00ED platn\u00E1 m\u00EDsta, jestli\u017Ee se p\u0159edpokl\u00E1d\u00E1, \u017Ee odpov\u00EDdaj\u00EDc\u00ED \u010D\u00EDslo le\u017E\u00ED mezi hranicemi chyby posledn\u00ED \u010D\u00EDslice. P\u0159\u00EDklady: Z\u00E1pisu se dv\u011Bma platn\u00FDmi m\u00EDsty vyhovuje ka\u017Ed\u00E9 \u010D\u00EDslo mezi 2 050 a 2 150. Z\u00E1pisu se \u010Dty\u0159mi platn\u00FDmi m\u00EDsty vyhovuje ka\u017Ed\u00E9 \u010D\u00EDslo mezi 409,95 a 410,05. Jde-li o \u00FAdaje veli\u010Din s norm\u00E1ln\u00EDm rozd\u011Blen\u00EDm s p\u0159idru\u017Eenou , doporu\u010Duje se v\u00FDhodn\u011Bj\u0161\u00ED (a obecn\u011Bj\u0161\u00ED) z\u00E1pis t\u011Bchto hodnot ve tvaru ; resp. . V takov\u00E9m z\u00E1pisu veli\u010Diny, nap\u0159. d\u00E9lky, ve tvaru m znamen\u00E1 d\u00E9lku v metrech, \u010D\u00EDselnou hodnotu a standardn\u00ED nejistotu vyj\u00E1d\u0159enou pomoc\u00ED posledn\u00EDho platn\u00E9ho m\u00EDsta v . P\u0159\u00EDklad: Z\u00E1pis m znamen\u00E1 takovou d\u00E9lku v metrech, jej\u00ED\u017E \u010D\u00EDseln\u00E1 hodnota le\u017E\u00ED s p\u0159\u00EDslu\u0161nou pravd\u011Bpodobnost\u00ED kdekoli mezi hodnotami a . Nen\u00ED spr\u00E1vn\u00E9 pro toto u\u017E\u00EDvat tvar m, proto\u017Ee m\u00E1 jin\u00FD v\u00FDznam. Zna\u010Dka \"\u00B1\" toti\u017E vyjad\u0159uje v matematice jen dv\u011B hodnoty, viz nap\u0159. vzorec pro dva ko\u0159eny kvadratick\u00E9 rovnice."@cs . . "Signifikante Stellen"@de . "D\u00EDgit significatiu \u00E9s la xifra que t\u00E9 significat per a un c\u00E0lcul concret. Quan un nombre t\u00E9 molts decimals, molts d\u00EDgits, no s'usen tots en els c\u00E0lculs sin\u00F3 que tan sols es prenen aquells que permetin expressar els resultats d'una manera correcta i tenint en compte que sempre hi haur\u00E0 el mateix error de c\u00E0lcul. Normalment, s'agafen els dos primers decimals, tenint en compte que el segon s'arrodoneix. L'arrodoniment d'aquest segon decimal es fa de la manera seg\u00FCent: \n* si es troba entre 0 i 4 s'agafa el decimal anterior Exemple: 5.63= 5.6 \n* si es troba entre 5 i 9 es passa a la unitat seg\u00FCent. Exemple 8.48= 8.5 Aquest criteri, utilitzat en matem\u00E0tiques, tamb\u00E9 t\u00E9 molta utilitat en altres camps com a l'hora de fer problemes de Qu\u00EDmica on, a m\u00E9s a m\u00E9s es treballen amb pot\u00E8ncies positives i negatives sovint. Arrodoniment de n d\u00EDgits significatius \u00E9s una t\u00E8cnica de prop\u00F2sit m\u00E9s general d'arrodonir a n decimals, ja que controla els nombres de diferents escales d'una manera uniforme. Per exemple, la poblaci\u00F3 d'una ciutat nom\u00E9s pot ser conegut pel miler i es planteja com a 52.000, mentre que la poblaci\u00F3 d'un pa\u00EDs nom\u00E9s pot ser conegut al mili\u00F3 m\u00E9s proper i es planteja com a 52.000.000. El primer podria tenir un error de centenars, i l'\u00FAltim podria tenir un error de centenars de milers, per\u00F2 tots dos tenen dos d\u00EDgits significatius (5 i 2). Aix\u00F2 reflecteix el fet que el significat de l'error (la seva mida probable en relaci\u00F3 amb la mida de la quantitat mesurada) \u00E9s el mateix en ambd\u00F3s casos."@ca . "July 2013"@en . "Zenbaki baten zifra esanguratsuak (digitu esanguratsuak bezala ere ezagunak) digituak dira, neurketak ebazteko zehaztasuna ematen dutenak. Adibidez, 2300 zenbakian, digitu esanguratsuen kopurua 2 da. 2040 zenbakian, digitu esanguratsuak \"204\" dira guztira 3. Zifra esanguratsuak kalkulatzeko honako arauak jarraitu behar dira:"@eu . . . . . . . "V\u00E4rdesiffror eller signifikanta siffror \u00E4r ett m\u00E5tt p\u00E5 hur noggrant ett n\u00E4rmev\u00E4rde \u00E4r. Antalet v\u00E4rdesiffror \u00E4r lika med antalet siffror i talet, exklusive inledande nollor. Om avslutande nollor \u00E4r signifikanta eller inte beror p\u00E5 hur n\u00E4rmev\u00E4rdet \u00E4r avrundat, se nedan."@sv . . . . . . . . . . . "Na matem\u00E1tica aplicada, algarismos significativos s\u00E3o utilizados para monitorar os erros ao se representar n\u00FAmeros reais na base 10. Excetuando-se quando todos os n\u00FAmeros envolvidos s\u00E3o inteiros (por exemplo o n\u00FAmero de pessoas numa sala), \u00E9 imposs\u00EDvel determinar o valor exato de determinada quantidade. Assim sendo, \u00E9 importante indicar a margem de erro numa medi\u00E7\u00E3o indicando os algarismos significativos, sendo estes os d\u00EDgitos com significado numa quantidade ou medi\u00E7\u00E3o. Utilizando algarismos significativos, o \u00FAltimo d\u00EDgito \u00E9 sempre incerto. Desta forma, \u00E9 importante utiliza-los em trabalhos cient\u00EDficos. Diz-se que uma representa\u00E7\u00E3o tem n algarismos significativos quando se admite um erro no algarismo seguinte da representa\u00E7\u00E3o. Por exemplo, 1/7 = 0,14 com dois algarismos significativos (j\u00E1 que o erro est\u00E1 na terceira casa decimal: 1/7 = 0,1428571429). Analogamente, 1/30 = 0,0333 com tr\u00EAs algarismos significativos (erro na quinta casa decimal). Para ilustrar, imagine que pediu a um amigo para medir a temperatura de \u00E1gua e ele disse-lhe que esta se encontrava \u00E0 22,0 \u00B0C. Neste caso, o algarismo duvidoso \u00E9 o 0, pois n\u00E3o se sabe ao certo se a temperatura \u00E9 por exemplo, 21,99 ou 22,01. Em suma tal remete -se ao facto dos arredondamentos serem realizados e nem sempre serem conhecidos. Para entender este conceito, imagine que um amigo seu lhe contou que na realidade a medi\u00E7\u00E3o foi de 21,689. Nesse contexto pode-se introduzir o conceito de precis\u00E3o e exactid\u00E3o. 22 \u00E9 um n\u00FAmero exacto, por\u00E9m 21,689 \u00E9 um n\u00FAmero mais preciso, precisar\u00E1 do valor preciso para realizar um c\u00E1lculo matem\u00E1tico, por exemplo, mas didacticamente adopta-se o 22."@pt . "\u6709\u6548\u6570\u5B57\uFF08\u82F1\u6587\uFF1ASignificant Figures, \u6216\u7B80\u5199\u4E3ASig. Fig.\uFF09\uFF0C\u5176\u4EE3\u8868\u4E00\u4E2A\u6578\u662F\u7531\u82E5\u5E72\u4F4D\u6578\u5B57\u7EC4\u6210\uFF0C\u5176\u4E2D\u5F71\u54CD\u5176\u6D4B\u91CF\u7CBE\u5EA6\u7684\u6570\u5B57\u88AB\u79F0\u4F5C\u6709\u6548\u6570\u5B57\uFF0C\u4E5F\u79F0\u6709\u6548\u6570\u4F4D\u3002 \u6709\u6548\u6570\u5B57\u6307\u79D1\u5B66\u8BA1\u7B97\u4E2D\u7528\u4EE5\u8868\u793A\u4E00\u5B9A\u957F\u5EA6\u6D6E\u70B9\u6570\u7CBE\u5EA6\u7684\u90A3\u4E9B\u6570\u5B57\u3002\u4E00\u822C\u6307\u4E00\u4E2A\u7528\u5C0F\u6570\u5F62\u5F0F\u8868\u793A\u7684\u6D6E\u70B9\u6570\u4E2D\uFF0C\u4ECE\u7B2C\u4E00\u4E2A\u975E\u96F6\u7684\u6570\u5B57\u7B97\u8D77\u7684\u6240\u6709\u6570\u5B57\uFF0C\u56E0\u6B64\uFF0C1.24\u548C0.00124\u7684\u6709\u6548\u6570\u5B57\u90FD\u67093\u4F4D\u3002\u5E76\u4E14\u5728\u53D6\u6709\u6548\u6570\u5B57\u65F6\u4E00\u822C\u4F1A\u9075\u5FAA\u56DB\u820D\u4E94\u5165\u7684\u8FDB\u4F4D\u89C4\u5219\u3002\u4F8B\u5982\u53D61.23456789\u4E3A\u4E09\u4F4D\u6709\u6548\u6570\u5B57\u540E\u7684\u6570\u503C\u5C06\u4F1A\u662F1.23\uFF0C\u800C\u53D6\u56DB\u4F4D\u6709\u6548\u6570\u5B57\u540E\u7684\u6570\u503C\u5C06\u4F1A\u662F1.235\u3002"@zh . . . . "Significante cijfers (Belgi\u00EB: beduidende cijfers of kenmerkende cijfers) drukken de nauwkeurigheid van een meting uit. Hoe meer cijfers significant zijn, hoe nauwkeuriger de gemeten waarde. Het aantal significante cijfers van een meetwaarde is niet afhankelijk van de grootte van een getal; waar de komma staat of hoeveel nullen achter de komma het getal begint, speelt geen rol. Het concept van significante cijfers is afkomstig van het meten met analoge meetinstrumenten. Bijvoorbeeld: de lengte van een object wordt gemeten met een liniaal met een schaalverdeling in millimeters. De lengte blijkt tussen de 6 en 7 millimeter te liggen, en je kunt zien dat het ongeveer op 2/3 van de afstand tussen beide is. Een acceptabel meetresultaat is dan 6,6 mm of 6,7 mm, maar niet 6,666666 mm. Dit laatste zou namelijk ten onrechte een veel grotere meetnauwkeurigheid suggereren, dan met deze meetmethode (liniaal) mogelijk is. Bij het rekenen met significante cijfers, bepaalt de term met de minste significante cijfers het aantal significante cijfers van de uitkomst, dat wil zeggen dat de uitkomst niet preciezer kan zijn dan de onnauwkeurigste meting. Het meest significante cijfer is het \"eerste\" cijfer van een getal (het meest linkse cijfer ongelijk aan nul). Het minst significante cijfer is het \"laatste\" cijfer van het getal (meestal, maar niet altijd, is dat het laatste cijfer). Een cijfer wordt meer significant genoemd als het meer significantie of gewicht heeft. In het decimale (10-tallig) stelsel neemt het gewicht van ieder cijfer naar links telkens toe met een factor 10. Naar rechts neemt het gewicht telkens af met een factor 10."@nl . . . . . . . . "Angka penting (atau angka signifikan) merupakan banyaknya digit yang diperhitungkan di dalam suatu kuantitas yang diukur atau dihitung. Ketika angka penting digunakan, digit terakhir dianggap tidak pasti. Ketidakpastian dari digit terakhir tergantung pada alat yang digunakan dalam suatu pengukuran."@in . "Cifra significativa"@it . "\u0631\u0642\u0645 \u0630\u0648 \u0623\u0647\u0645\u064A\u0629"@ar . . "\u0417\u043D\u0430\u0447\u0443\u0449\u0456 \u0446\u0438\u0444\u0440\u0438 (\u0442\u0430\u043A\u043E\u0436 \u0432\u0456\u0434\u043E\u043C\u0456 \u044F\u043A \u0442\u043E\u0447\u043D\u0456\u0441\u0442\u044C \u0447\u0438\u0441\u043B\u0430) \u2014 \u0446\u0435 \u0446\u0438\u0444\u0440\u0438, \u044F\u043A\u0456 \u043C\u0430\u044E\u0442\u044C \u0456\u0441\u0442\u043E\u0442\u043D\u0435 \u0437\u043D\u0430\u0447\u0435\u043D\u043D\u044F \u0443 \u0432\u0438\u0437\u043D\u0430\u0447\u0435\u043D\u043D\u0456 \u0437\u0434\u0430\u0442\u043D\u043E\u0441\u0442\u0456 \u0432\u0438\u043C\u0456\u0440\u044E\u0432\u0430\u043D\u043D\u044F \u0447\u0438\u0441\u043B\u0430. \u0421\u044E\u0434\u0438 \u0432\u0445\u043E\u0434\u044F\u0442\u044C \u0443\u0441\u0456 \u0446\u0438\u0444\u0440\u0438, \u043A\u0440\u0456\u043C: \n* \u041F\u0440\u043E\u0432\u0456\u0434\u043D\u0438\u0445 \u043D\u0443\u043B\u0456\u0432. \u041D\u0430\u043F\u0440\u0438\u043A\u043B\u0430\u0434, \u00AB013.\u00BB \u043C\u0430\u0454 \u0434\u0432\u0456 \u0437\u043D\u0430\u0447\u0443\u0449\u0456 \u0446\u0438\u0444\u0440\u0438: 1 \u0456 3; \n* , \u043A\u043E\u043B\u0438 \u0432\u043E\u043D\u0438 \u043F\u0440\u043E\u0441\u0442\u043E \u0437\u0430\u043F\u043E\u0432\u043D\u044E\u0432\u0430\u0447\u0456, \u0449\u043E\u0431 \u0432\u043A\u0430\u0437\u0430\u0442\u0438 \u043C\u0430\u0441\u0448\u0442\u0430\u0431 \u0447\u0438\u0441\u043B\u0430 (\u0442\u043E\u0447\u043D\u0456 \u043F\u0440\u0430\u0432\u0438\u043B\u0430 \u043F\u043E\u044F\u0441\u043D\u044E\u044E\u0442\u044C\u0441\u044F \u043F\u0440\u0438 ); \n* \u041F\u043E\u043C\u0438\u043B\u043A\u043E\u0432\u0438\u0445 \u0446\u0438\u0444\u0440, \u044F\u043A\u0456 \u0432\u0432\u0435\u0434\u0435\u043D\u0456, \u043D\u0430\u043F\u0440\u0438\u043A\u043B\u0430\u0434, \u0437\u0430 \u0434\u043E\u043F\u043E\u043C\u043E\u0433\u043E\u044E \u043E\u0431\u0447\u0438\u0441\u043B\u0435\u043D\u044C, \u043F\u0440\u043E\u0432\u0435\u0434\u0435\u043D\u0438\u0445 \u0437 \u0431\u0456\u043B\u044C\u0448\u043E\u044E \u0442\u043E\u0447\u043D\u0456\u0441\u0442\u044E, \u043D\u0456\u0436 \u0432\u0438\u0445\u0456\u0434\u043D\u0456 \u0434\u0430\u043D\u0456, \u0430\u0431\u043E \u0432\u0438\u043C\u0456\u0440\u044E\u0432\u0430\u043D\u044C, \u043F\u0435\u0440\u0435\u0434\u0430\u043D\u0438\u0445 \u0437 \u0442\u043E\u0447\u043D\u0456\u0441\u0442\u044E, \u044F\u043A\u0430 \u043F\u0435\u0440\u0435\u0432\u0438\u0449\u0443\u0454 \u043E\u0431\u0447\u0438\u0441\u043B\u044E\u0432\u0430\u043B\u044C\u043D\u0456 \u0437\u0434\u0430\u0442\u043D\u043E\u0441\u0442\u0456 \u043E\u0431\u043B\u0430\u0434\u043D\u0430\u043D\u043D\u044F."@uk . "\uC720\uD6A8\uC22B\uC790(Significant figures)\uB294 \uC218\uC758 \uC815\uD655\uB3C4\uC5D0 \uC601\uD5A5\uC744 \uC8FC\uB294 \uC22B\uC790\uC774\uB2E4. \uBCF4\uD1B5 \uB2E4\uC74C\uC758 \uACBD\uC6B0\uB97C \uC81C\uC678\uD558\uACE0 \uBAA8\uB4E0 \uC22B\uC790\uB294 \uC720\uD6A8\uC22B\uC790\uC774\uB2E4. \n* \uC18C\uC22B\uC810 \uCCAB\uC9F8\uC790\uB9AC\uC5D0\uC11C\uBD80\uD130 \uB298\uC5B4\uC838\uC788\uB294 0\uB4E4, \uC989, 0.00...0~ [EX] 0.00012\uC5D0\uC11C 4\uAC1C\uC758 0\uB4E4 \n* \uC5B4\uB5A4 \uC790\uB9AC\uC5D0\uC11C \uC77C\uC758 \uC790\uB9AC\uAE4C\uC9C0 \uC5F0\uC18D\uC801\uC73C\uB85C \uB298\uC5B4\uC838\uC788\uB294 0\uB4E4, \uC989 ~00...0 [EX] 1200\uC5D0\uC11C 00.cf) 1200.0, 1200.00\uC740 \uAC01 \uC790\uB9AC\uC218\uAC00 \uBAA8\uB450 \uC720\uD6A8\uC22B\uC790\uC774\uB2E4. \uC774\uB294 \uC18C\uC22B\uC810\uC744 \uC0AC\uC6A9\uD568\uC73C\uB85C\uC368 \uBD88\uD655\uC2E4\uD55C 0\uB4E4\uC744 \uD655\uC2E4\uD55C 0\uB4E4\uB85C \uB9CC\uB4E4\uC5B4 \uC720\uD6A8\uC22B\uC790\uC758 \uBC94\uC704\uB97C \uB298\uB824\uC900\uB2E4\uACE0 \uD574\uC11D \uAC00\uB2A5\uD558\uB2E4. \uC774\uB4E4\uC740 \uC22B\uC790\uB97C \uD45C\uD604\uD558\uB294 \uB2E8\uC704\uB97C \uBC14\uAFB8\uAC70\uB098 \uACFC\uD559\uC801 \uD45C\uAE30\uBC95\uC744 \uC4F0\uBA74 \uC5C6\uC5B4\uC9C8 \uC218 \uC788\uB294 \uC22B\uC790\uB4E4\uC774\uBBC0\uB85C \uC720\uD6A8\uC22B\uC790\uAC00 \uC544\uB2C8\uBA70, \uC790\uB9BF\uC218\uB97C \uCC44\uC6B0\uAE30 \uC704\uD574 \uC4F0\uB294 '0'\uC774\uB77C\uACE0 \uD560 \uC218 \uC788\uB2E4. \uC5B4\uB5A4 \uC22B\uC790\uB4E4\uAC04\uC758 \uACC4\uC0B0\uACB0\uACFC\uAC00 \uACC4\uC0B0\uC5D0 \uC774\uC6A9\uB41C \uC22B\uC790\uB4E4\uBCF4\uB2E4 \uC815\uBC00\uD558\uAC8C \uD45C\uD604\uB420 \uB54C\uB294 \uC720\uD6A8\uC22B\uC790\uAC00 \uC544\uB2CC \uC22B\uC790\uB4E4\uC774 \uACC4\uC0B0\uACB0\uACFC\uC5D0 \uD3EC\uD568\uB418\uC5B4 \uC788\uB2E4. \uC5B4\uB5A4 \uCE21\uC815\uAE30\uAE30\uB85C \uBB34\uC5B8\uAC00\uB97C \uCE21\uC815\uD558\uC600\uC744 \uB54C, \uAE30\uAE30\uAC00 \uCE21\uC815\uD560 \uC218 \uC788\uB294 \uC815\uBC00\uB3C4\uBCF4\uB2E4 \uB354 \uC815\uD655\uD558\uAC8C \uCE21\uC815 \uACB0\uACFC\uAC00 \uD45C\uD604\uB418\uC5C8\uB2E4\uBA74 \uACB0\uACFC\uC5D0 \uC720\uD6A8\uC22B\uC790\uAC00 \uC544\uB2CC \uC22B\uC790\uB4E4\uC774 \uD3EC\uD568\uB418\uC5B4 \uC788\uB2E4."@ko . . "Chiffre significatif"@fr . "Problems"@en . . . "Le nombre de chiffres significatifs indique la pr\u00E9cision d'une mesure physique. Il s'agit des chiffres connus avec certitude ou compris dans un intervalle d'incertitude. La pr\u00E9cision (ou l'incertitude) avec laquelle on conna\u00EEt la valeur d'une grandeur d\u00E9pend du mesurage (ensemble d'op\u00E9rations ayant pour but de d\u00E9terminer la valeur d'une grandeur). Exemple : 12 345 a cinq chiffres significatifs. Le premier chiffre incertain est le 5. Cette notion est une simplification de la notion d'incertitude de mesure : au lieu d'exprimer l'incertitude sous la forme d'une valeur, on suppose implicitement qu'elle est de l'ordre de grandeur de l'unit\u00E9 du premier chiffre incertain. L'exemple ci-dessus est ainsi \u00E9quivalent \u00E0 12 345 \u00B1 1."@fr . "Cyfry znacz\u0105ce, cyfry warto\u015Bciowe \u2013 cyfry rozwini\u0119cia dziesi\u0119tnego mierzonej wielko\u015Bci fizycznej, pocz\u0105wszy od pierwszej cyfry niezerowej a\u017C do ostatniej cyfry, kt\u00F3rej warto\u015B\u0107 nie zmienia si\u0119 wewn\u0105trz przyj\u0119tego przedzia\u0142u ufno\u015Bci.[wymaga weryfikacji?] Przyk\u0142ad: W wyniku pomiaru okre\u015Blono warto\u015B\u0107 napi\u0119cia na 0,001 023 41 V, przy czym dok\u0142adno\u015B\u0107 pomiaru wynosi \u00B10,000 003 V. Wiemy zatem, \u017Ce mierzone napi\u0119cie zawiera si\u0119 w przedziale ufno\u015Bci (0,001 020 41 V; 0,001 026 41 V) Mamy zatem trzy cyfry znacz\u0105ce: 0,001 02 V."@pl . . "\u6709\u52B9\u6570\u5B57\uFF08\u3086\u3046\u3053\u3046\u3059\u3046\u3058\u3001\u82F1\u8A9E: significant figures, significant digits\uFF09\u3068\u306F\u3001\u6E2C\u5B9A\u7D50\u679C\u306A\u3069\u3092\u8868\u3059\u6570\u5B57\u306E\u3046\u3061\u3067\u3001\u4F4D\u53D6\u308A\u3092\u793A\u3059\u3060\u3051\u306E\u30BC\u30ED\u3092\u9664\u3044\u305F\u610F\u5473\u306E\u3042\u308B\u6570\u5B57\u3067\u3042\u308B\u3002\u8AA4\u5DEE\u3092\u542B\u3080\u6841\u3088\u308A\u4E0A\u306E\u6841\u3092\u6307\u3059\u3002"@ja . . . . . . "Na matem\u00E1tica aplicada, algarismos significativos s\u00E3o utilizados para monitorar os erros ao se representar n\u00FAmeros reais na base 10. Excetuando-se quando todos os n\u00FAmeros envolvidos s\u00E3o inteiros (por exemplo o n\u00FAmero de pessoas numa sala), \u00E9 imposs\u00EDvel determinar o valor exato de determinada quantidade. Assim sendo, \u00E9 importante indicar a margem de erro numa medi\u00E7\u00E3o indicando os algarismos significativos, sendo estes os d\u00EDgitos com significado numa quantidade ou medi\u00E7\u00E3o. Utilizando algarismos significativos, o \u00FAltimo d\u00EDgito \u00E9 sempre incerto. Desta forma, \u00E9 importante utiliza-los em trabalhos cient\u00EDficos."@pt . "May 2019"@en . . . . . . "V\u00E4rdesiffra"@sv . . . . "Significant cijfer"@nl . . "Zenbaki baten zifra esanguratsuak (digitu esanguratsuak bezala ere ezagunak) digituak dira, neurketak ebazteko zehaztasuna ematen dutenak. Adibidez, 2300 zenbakian, digitu esanguratsuen kopurua 2 da. 2040 zenbakian, digitu esanguratsuak \"204\" dira guztira 3. Zifra esanguratsuak kalkulatzeko honako arauak jarraitu behar dira: \n* Zero ez diren zifra guztiak esanguratsuak dira: 1, 2, 3, 4, 5, 6, 7, 8, 9. \n* Zero ez diren bi zifra desberdinen artean dauden zeroak esanguratsuak dira: 102, 2005, 50009. \n* Ezkerretara dauden zeroak ez-esanguratsuak dira: 0,02, 001,887, 0,000515. \n* Komaren eskuinera dauden zeroak esanguratsuak dira: 2,02000, 5,400, 57,5400. \n* Komarik ez duen zenbaki baten azken muturrean dauden zeroak esanguratsuak edo ez-esanguratsuak izan daitezke."@eu . "Significant figures (also known as the significant digits, precision or resolution) of a number in positional notation are digits in the number that are reliable and necessary to indicate the quantity of something. If a number expressing the result of a measurement (e.g., length, pressure, volume, or mass) has more digits than the number of digits allowed by the measurement resolution, then only as many digits as allowed by the measurement resolution are reliable, and so only these can be significant figures. For example, if a length measurement gives 114.8 mm while the smallest interval between marks on the ruler used in the measurement is 1 mm, then the first three digits (1, 1, and 4, showing 114 mm) are certain and so they are significant figures. Digits which are uncertain but reliable are also considered significant figures. In this example, the last digit (8, which adds 0.8 mm) is also considered a significant figure even though there is uncertainty in it. Another example is a volume measurement of 2.98 L with an uncertainty of \u00B1 0.05 L. The actual volume is somewhere between 2.93 L and 3.03 L. Even when some of the digits are not certain, as long as they are reliable, they are considered significant because they indicate the actual volume within the acceptable degree of uncertainty. In this example the actual volume might be 2.94 L or might instead be 3.02 L. And so all three are significant figures. The following digits are not significant figures. \n* All leading zeros. For example, 013 kg has two significant figures, 1 and 3, and the leading zero is not significant since it is not necessary to indicate the mass; 013 kg = 13 kg so 0 is not necessary. In the case of 0.056 m there are two insignificant leading zeros since 0.056 m = 56 mm and so the leading zeros are not necessary to indicate the length. \n* Trailing zeros when they are merely placeholders. For example, the trailing zeros in 1500 m as a length measurement are not significant if they are just placeholders for ones and tens places as the measurement resolution is 100 m. In this case, 1500 m means the length to measure is close to 1500 m rather than saying that the length is exactly 1500 m. \n* Spurious digits, introduced by calculations resulting in a number with a greater precision than the precision of the used data in the calculations, or in a measurement reported to a greater precision than the measurement resolution. Of the significant figures in a number, the most significant is the digit with the highest exponent value (simply the left-most significant figure), and the least significant is the digit with the lowest exponent value (simply the right-most significant figure). For example, in the number \"123\", the \"1\" is the most significant figure as it counts hundreds (102), and \"3\" is the least significant figure as it counts ones (100). Significance arithmetic is a set of approximate rules for roughly maintaining significance throughout a computation. The more sophisticated scientific rules are known as propagation of uncertainty. Numbers are often rounded to avoid reporting insignificant figures. For example, it would create false precision to express a measurement as 12.34525 kg if the scale was only measured to the nearest gram. In this case, the significant figures are the first 5 digits from the left-most digit (1, 2, 3, 4, and 5), and the number needs to be rounded to the significant figures so that it will be 12.345 kg as the reliable value. Numbers can also be rounded merely for simplicity rather than to indicate a precision of measurement, for example, in order to make the numbers faster to pronounce in news broadcasts. Radix 10 (base-10, decimal numbers) is assumed in the following."@en . . "\u0623\u0647\u0645\u064A\u0629 \u0631\u0642\u0645 \u0645\u0643\u062A\u0648\u0628 \u0628\u0627\u0644\u062A\u062F\u0648\u064A\u0646 \u0627\u0644\u0645\u0648\u0636\u0639\u064A \u0647\u064A \u0642\u064A\u0645\u0629 \u0627\u0644\u0631\u0642\u0645 \u062D\u0633\u0628 \u0645\u0648\u0642\u0639\u0647. \u064A\u062A\u0636\u0645\u0646 \u0647\u0630\u0627 \u062C\u0645\u064A\u0639 \u0627\u0644\u0623\u0631\u0642\u0627\u0645 \u0628\u0627\u0633\u062A\u062B\u0646\u0627\u0621: \n* \u0643\u0644 \u0627\u0644\u0623\u0635\u0641\u0627\u0631 \u0627\u0644\u0628\u0627\u062F\u0626\u0629. \u0639\u0644\u0649 \u0633\u0628\u064A\u0644 \u0627\u0644\u0645\u062B\u0627\u0644\u060C \u064A\u062D\u062A\u0648\u064A \"013\" \u0639\u0644\u0649 \u0631\u0642\u0645\u064A\u0646 \u0645\u0639\u0646\u0648\u064A\u064A\u0646: 1 \u06483. \n* \u0627\u0644\u0623\u0635\u0641\u0627\u0631 \u0627\u0644\u0632\u0627\u0626\u062F\u0629 \u0639\u0646\u062F\u0645\u0627 \u062A\u0643\u0648\u0646 \u0645\u062C\u0631\u062F \u0639\u0646\u0627\u0635\u0631 \u0646\u0627\u0626\u0628\u0629 \u0644\u0644\u0625\u0634\u0627\u0631\u0629 \u0625\u0644\u0649 \u0645\u0642\u064A\u0627\u0633 \u0627\u0644\u0639\u062F\u062F. \u0639\u0644\u0649 \u0633\u0628\u064A\u0644 \u0627\u0644\u0645\u062B\u0627\u0644\u060C \"26.9000\". \n* \u0627\u0644\u0623\u0631\u0642\u0627\u0645 \u0627\u0644\u0632\u0627\u0626\u0641\u0629. \u0639\u0644\u0649 \u0633\u0628\u064A\u0644 \u0627\u0644\u0645\u062B\u0627\u0644\u060C \u0645\u0646 \u062E\u0644\u0627\u0644 \u0627\u0644\u062D\u0633\u0627\u0628\u0627\u062A \u0627\u0644\u062A\u064A \u062A\u0645 \u0625\u062C\u0631\u0627\u0624\u0647\u0627 \u0628\u062F\u0642\u0629 \u0623\u0643\u0628\u0631 \u0645\u0646 \u062F\u0642\u0629 \u0627\u0644\u0628\u064A\u0627\u0646\u0627\u062A \u0627\u0644\u0623\u0635\u0644\u064A\u0629\u060C \u0623\u0648 \u0627\u0644\u0642\u064A\u0627\u0633\u0627\u062A \u0627\u0644\u062A\u064A \u062A\u0645 \u0627\u0644\u0625\u0628\u0644\u0627\u063A \u0639\u0646\u0647\u0627 \u0628\u062F\u0642\u0629 \u0623\u0643\u0628\u0631 \u0645\u0646 \u0627\u0644\u062A\u064A \u062A\u062F\u0639\u0645\u0647\u0627 \u0627\u0644\u0645\u0639\u062F\u0627\u062A."@ar . . "\u0417\u043D\u0430\u0447\u0443\u0449\u0456 \u0446\u0438\u0444\u0440\u0438 (\u0442\u0430\u043A\u043E\u0436 \u0432\u0456\u0434\u043E\u043C\u0456 \u044F\u043A \u0442\u043E\u0447\u043D\u0456\u0441\u0442\u044C \u0447\u0438\u0441\u043B\u0430) \u2014 \u0446\u0435 \u0446\u0438\u0444\u0440\u0438, \u044F\u043A\u0456 \u043C\u0430\u044E\u0442\u044C \u0456\u0441\u0442\u043E\u0442\u043D\u0435 \u0437\u043D\u0430\u0447\u0435\u043D\u043D\u044F \u0443 \u0432\u0438\u0437\u043D\u0430\u0447\u0435\u043D\u043D\u0456 \u0437\u0434\u0430\u0442\u043D\u043E\u0441\u0442\u0456 \u0432\u0438\u043C\u0456\u0440\u044E\u0432\u0430\u043D\u043D\u044F \u0447\u0438\u0441\u043B\u0430. \u0421\u044E\u0434\u0438 \u0432\u0445\u043E\u0434\u044F\u0442\u044C \u0443\u0441\u0456 \u0446\u0438\u0444\u0440\u0438, \u043A\u0440\u0456\u043C: \n* \u041F\u0440\u043E\u0432\u0456\u0434\u043D\u0438\u0445 \u043D\u0443\u043B\u0456\u0432. \u041D\u0430\u043F\u0440\u0438\u043A\u043B\u0430\u0434, \u00AB013.\u00BB \u043C\u0430\u0454 \u0434\u0432\u0456 \u0437\u043D\u0430\u0447\u0443\u0449\u0456 \u0446\u0438\u0444\u0440\u0438: 1 \u0456 3; \n* , \u043A\u043E\u043B\u0438 \u0432\u043E\u043D\u0438 \u043F\u0440\u043E\u0441\u0442\u043E \u0437\u0430\u043F\u043E\u0432\u043D\u044E\u0432\u0430\u0447\u0456, \u0449\u043E\u0431 \u0432\u043A\u0430\u0437\u0430\u0442\u0438 \u043C\u0430\u0441\u0448\u0442\u0430\u0431 \u0447\u0438\u0441\u043B\u0430 (\u0442\u043E\u0447\u043D\u0456 \u043F\u0440\u0430\u0432\u0438\u043B\u0430 \u043F\u043E\u044F\u0441\u043D\u044E\u044E\u0442\u044C\u0441\u044F \u043F\u0440\u0438 ); \n* \u041F\u043E\u043C\u0438\u043B\u043A\u043E\u0432\u0438\u0445 \u0446\u0438\u0444\u0440, \u044F\u043A\u0456 \u0432\u0432\u0435\u0434\u0435\u043D\u0456, \u043D\u0430\u043F\u0440\u0438\u043A\u043B\u0430\u0434, \u0437\u0430 \u0434\u043E\u043F\u043E\u043C\u043E\u0433\u043E\u044E \u043E\u0431\u0447\u0438\u0441\u043B\u0435\u043D\u044C, \u043F\u0440\u043E\u0432\u0435\u0434\u0435\u043D\u0438\u0445 \u0437 \u0431\u0456\u043B\u044C\u0448\u043E\u044E \u0442\u043E\u0447\u043D\u0456\u0441\u0442\u044E, \u043D\u0456\u0436 \u0432\u0438\u0445\u0456\u0434\u043D\u0456 \u0434\u0430\u043D\u0456, \u0430\u0431\u043E \u0432\u0438\u043C\u0456\u0440\u044E\u0432\u0430\u043D\u044C, \u043F\u0435\u0440\u0435\u0434\u0430\u043D\u0438\u0445 \u0437 \u0442\u043E\u0447\u043D\u0456\u0441\u0442\u044E, \u044F\u043A\u0430 \u043F\u0435\u0440\u0435\u0432\u0438\u0449\u0443\u0454 \u043E\u0431\u0447\u0438\u0441\u043B\u044E\u0432\u0430\u043B\u044C\u043D\u0456 \u0437\u0434\u0430\u0442\u043D\u043E\u0441\u0442\u0456 \u043E\u0431\u043B\u0430\u0434\u043D\u0430\u043D\u043D\u044F. \u041D\u0430\u0439\u0431\u0456\u043B\u044C\u0448 \u0437\u043D\u0430\u0447\u0443\u0449\u043E\u044E \u0446\u0438\u0444\u0440\u043E\u044E \u0447\u0438\u0441\u043B\u0430, \u0454 \u0446\u0438\u0444\u0440\u0430, \u0449\u043E \u0437\u0430\u0439\u043C\u0430\u0454 \u043F\u043E\u0437\u0438\u0446\u0456\u044E \u0437 \u043D\u0430\u0439\u0431\u0456\u043B\u044C\u0448\u0438\u043C \u043F\u043E\u043A\u0430\u0437\u043D\u0438\u043A\u043E\u043C (\u043B\u0456\u0432\u0456\u0448\u0430 \u0443 \u0437\u0432\u0438\u0447\u0430\u0439\u043D\u043E\u043C\u0443 \u0434\u0435\u0441\u044F\u0442\u043A\u043E\u0432\u043E\u043C\u0443 \u043F\u043E\u0437\u043D\u0430\u0447\u0435\u043D\u043D\u0456), \u0430 \u043D\u0430\u0439\u043C\u0435\u043D\u0448 \u0437\u043D\u0430\u0447\u0443\u0449\u043E\u044E \u0454 \u0446\u0438\u0444\u0440\u0430, \u043F\u043E\u0437\u0438\u0446\u0456\u044F \u044F\u043A\u043E\u0457 \u043C\u0430\u0454 \u043D\u0430\u0439\u043D\u0438\u0436\u0447\u0435 \u0437\u043D\u0430\u0447\u0435\u043D\u043D\u044F \u043F\u043E\u043A\u0430\u0437\u043D\u0438\u043A\u0430 (\u043F\u0440\u0430\u0432\u0456\u0448\u0430 \u0443 \u0437\u0432\u0438\u0447\u0430\u0439\u043D\u043E\u043C\u0443 \u0434\u0435\u0441\u044F\u0442\u043A\u043E\u0432\u043E\u043C\u0443 \u043F\u043E\u0437\u043D\u0430\u0447\u0435\u043D\u043D\u0456). \u041D\u0430\u043F\u0440\u0438\u043A\u043B\u0430\u0434, \u0443 \u0447\u0438\u0441\u043B\u0456 \u00AB123\u00BB: \u00AB1\u00BB \u0454 \u043D\u0430\u0439\u0431\u0456\u043B\u044C\u0448 \u0437\u043D\u0430\u0447\u0443\u0449\u043E\u044E \u0446\u0438\u0444\u0440\u043E\u044E, \u043E\u0441\u043A\u0456\u043B\u044C\u043A\u0438 \u0432\u043E\u043D\u0430 \u043D\u0430\u0440\u0430\u0445\u043E\u0432\u0443\u0454 \u0441\u043E\u0442\u043D\u0456 (102), \u0430 \u00AB3\u00BB \u2014 \u043D\u0430\u0439\u043C\u0435\u043D\u0448 \u0437\u043D\u0430\u0447\u0443\u0449\u0430 \u0446\u0438\u0444\u0440\u0430, \u043E\u0441\u043A\u0456\u043B\u044C\u043A\u0438 \u0432\u043E\u043D\u0430 \u043D\u0430\u0440\u0430\u0445\u043E\u0432\u0443\u0454 \u043E\u0434\u0438\u043D\u0438\u0446\u0456 (100). \u2014 \u0446\u0435 \u0441\u0443\u043A\u0443\u043F\u043D\u0456\u0441\u0442\u044C \u043F\u0440\u0430\u0432\u0438\u043B \u0434\u043B\u044F \u0437\u0431\u0435\u0440\u0435\u0436\u0435\u043D\u043D\u044F \u043D\u0430\u0431\u043B\u0438\u0436\u0435\u043D\u043E\u0457 \u0437\u043D\u0430\u0447\u0443\u0449\u043E\u0441\u0442\u0456 \u043F\u0440\u043E\u0442\u044F\u0433\u043E\u043C \u0443\u0441\u0456\u0445 \u043E\u0431\u0447\u0438\u0441\u043B\u0435\u043D\u044C. \u0421\u043A\u043B\u0430\u0434\u043D\u0456\u0448\u0438\u043C\u0438 \u043D\u0430\u0443\u043A\u043E\u0432\u0438\u043C\u0438 \u043F\u0440\u0430\u0432\u0438\u043B\u0430\u043C\u0438 \u0454 . \u0429\u043E\u0431 \u043D\u0435 \u0432\u0438\u043A\u043E\u0440\u0438\u0441\u0442\u043E\u0432\u0443\u0432\u0430\u0442\u0438 \u043D\u0435\u0437\u043D\u0430\u0447\u043D\u0456 \u0446\u0438\u0444\u0440\u0438, \u0447\u0438\u0441\u043B\u0430 \u0447\u0430\u0441\u0442\u043E \u043E\u043A\u0440\u0443\u0433\u043B\u044F\u044E\u0442\u044C\u0441\u044F. \u041D\u0430\u043F\u0440\u0438\u043A\u043B\u0430\u0434, \u0449\u043E\u0431 \u043D\u0435 \u0441\u0442\u0432\u043E\u0440\u044E\u0432\u0430\u0442\u0438 \u0445\u0438\u0431\u043D\u0443 \u0442\u043E\u0447\u043D\u0456\u0441\u0442\u044C \u0432\u0438\u043C\u0456\u0440\u044E\u0432\u0430\u043D\u043D\u044F, \u044F\u043A 12,34525 \u043A\u0433 (\u0449\u043E \u043C\u0430\u0454 \u0441\u0456\u043C \u0437\u043D\u0430\u0447\u0443\u0449\u0438\u0445 \u0446\u0438\u0444\u0440), \u044F\u043A\u0449\u043E \u0432\u0430\u0433\u0438 \u0432\u0438\u043C\u0456\u0440\u044E\u044E\u0442\u044C \u043B\u0438\u0448\u0435 \u0434\u043E \u0433\u0440\u0430\u043C\u0456\u0432, \u0442\u0440\u0435\u0431\u0430 \u043F\u043E\u043A\u0430\u0437\u0443\u0432\u0430\u0442\u0438 12,345 \u043A\u0433 (\u0449\u043E \u043C\u0430\u0454 \u043F'\u044F\u0442\u044C \u0437\u043D\u0430\u0447\u0443\u0449\u0438\u0445 \u0446\u0438\u0444\u0440). \u0427\u0438\u0441\u043B\u0430 \u0442\u0430\u043A\u043E\u0436 \u043C\u043E\u0436\u0443\u0442\u044C \u0431\u0443\u0442\u0438 \u043E\u043A\u0440\u0443\u0433\u043B\u0435\u043D\u0456 \u043F\u0440\u043E\u0441\u0442\u043E \u0434\u043B\u044F \u043F\u0440\u043E\u0441\u0442\u043E\u0442\u0438, \u0430 \u043D\u0435 \u0434\u043B\u044F \u0432\u043A\u0430\u0437\u0456\u0432\u043A\u0438 \u0437\u0430\u0434\u0430\u043D\u043E\u0457 \u0442\u043E\u0447\u043D\u043E\u0441\u0442\u0456 \u0432\u0438\u043C\u0456\u0440\u044E\u0432\u0430\u043D\u043D\u044F, \u043D\u0430\u043F\u0440\u0438\u043A\u043B\u0430\u0434, \u0434\u043B\u044F \u0442\u043E\u0433\u043E, \u0449\u043E\u0431 \u0432\u043E\u043D\u0438 \u0448\u0432\u0438\u0434\u0448\u0435 \u0432\u0438\u043C\u043E\u0432\u043B\u044F\u043B\u0438\u0441\u044F \u0432 \u043D\u043E\u0432\u0438\u043D\u043D\u0438\u0445 \u0435\u0444\u0456\u0440\u0430\u0445."@uk . . . "Cyfry znacz\u0105ce"@pl . . "Significante cijfers (Belgi\u00EB: beduidende cijfers of kenmerkende cijfers) drukken de nauwkeurigheid van een meting uit. Hoe meer cijfers significant zijn, hoe nauwkeuriger de gemeten waarde. Het aantal significante cijfers van een meetwaarde is niet afhankelijk van de grootte van een getal; waar de komma staat of hoeveel nullen achter de komma het getal begint, speelt geen rol."@nl . "Stellen einer Zahl werden signifikante Stellen (auch: geltende/g\u00FCltige Stellen/Ziffern) genannt, wenn sie aussagekr\u00E4ftig sind. Dazu m\u00FCssen m\u00F6gliche Abweichungen dieser Zahl innerhalb der Grenzen der Abweichung der letzten Stelle liegen. F\u00FChrende Nullen sind nicht aussagekr\u00E4ftig. Ob endende Nullen signifikant sind, muss fallweise hinterfragt werden \u2013 durch geeignete Schreibweise kann hier f\u00FCr Klarheit gesorgt werden."@de . "35949"^^ . . . . "D\u00EDgit significatiu"@ca . . "La determinazione delle cifre significative pone, in maniera implicita, un'espressione numerica all'interno di un intervallo; per esempio per indicare l'errore nella misurazione, l'intervallo di confidenza di una stima o l'errore propagato nel risultato di una successione di calcoli. La loro definizione segue il principio di non indicare pi\u00F9 cifre di quelle giustificate dalla sensibilit\u00E0 della misurazione o di qualsiasi altro processo abbia portato al numero indicato. Il calcolo della significativit\u00E0 delle cifre di una misura \u00E8 molto importante, specie quando sono in gioco quantit\u00E0 in correlazione; un caso esemplare \u00E8 quello delle coppie di Heisenberg (posizione e quantit\u00E0 di moto, per esempio)."@it . . . . . . "Angka penting (atau angka signifikan) merupakan banyaknya digit yang diperhitungkan di dalam suatu kuantitas yang diukur atau dihitung. Ketika angka penting digunakan, digit terakhir dianggap tidak pasti. Ketidakpastian dari digit terakhir tergantung pada alat yang digunakan dalam suatu pengukuran."@in . "La determinazione delle cifre significative pone, in maniera implicita, un'espressione numerica all'interno di un intervallo; per esempio per indicare l'errore nella misurazione, l'intervallo di confidenza di una stima o l'errore propagato nel risultato di una successione di calcoli. La loro definizione segue il principio di non indicare pi\u00F9 cifre di quelle giustificate dalla sensibilit\u00E0 della misurazione o di qualsiasi altro processo abbia portato al numero indicato."@it . "\u6709\u6548\u6570\u5B57\uFF08\u82F1\u6587\uFF1ASignificant Figures, \u6216\u7B80\u5199\u4E3ASig. Fig.\uFF09\uFF0C\u5176\u4EE3\u8868\u4E00\u4E2A\u6578\u662F\u7531\u82E5\u5E72\u4F4D\u6578\u5B57\u7EC4\u6210\uFF0C\u5176\u4E2D\u5F71\u54CD\u5176\u6D4B\u91CF\u7CBE\u5EA6\u7684\u6570\u5B57\u88AB\u79F0\u4F5C\u6709\u6548\u6570\u5B57\uFF0C\u4E5F\u79F0\u6709\u6548\u6570\u4F4D\u3002 \u6709\u6548\u6570\u5B57\u6307\u79D1\u5B66\u8BA1\u7B97\u4E2D\u7528\u4EE5\u8868\u793A\u4E00\u5B9A\u957F\u5EA6\u6D6E\u70B9\u6570\u7CBE\u5EA6\u7684\u90A3\u4E9B\u6570\u5B57\u3002\u4E00\u822C\u6307\u4E00\u4E2A\u7528\u5C0F\u6570\u5F62\u5F0F\u8868\u793A\u7684\u6D6E\u70B9\u6570\u4E2D\uFF0C\u4ECE\u7B2C\u4E00\u4E2A\u975E\u96F6\u7684\u6570\u5B57\u7B97\u8D77\u7684\u6240\u6709\u6570\u5B57\uFF0C\u56E0\u6B64\uFF0C1.24\u548C0.00124\u7684\u6709\u6548\u6570\u5B57\u90FD\u67093\u4F4D\u3002\u5E76\u4E14\u5728\u53D6\u6709\u6548\u6570\u5B57\u65F6\u4E00\u822C\u4F1A\u9075\u5FAA\u56DB\u820D\u4E94\u5165\u7684\u8FDB\u4F4D\u89C4\u5219\u3002\u4F8B\u5982\u53D61.23456789\u4E3A\u4E09\u4F4D\u6709\u6548\u6570\u5B57\u540E\u7684\u6570\u503C\u5C06\u4F1A\u662F1.23\uFF0C\u800C\u53D6\u56DB\u4F4D\u6709\u6548\u6570\u5B57\u540E\u7684\u6570\u503C\u5C06\u4F1A\u662F1.235\u3002"@zh . . . . "V\u00E4rdesiffror eller signifikanta siffror \u00E4r ett m\u00E5tt p\u00E5 hur noggrant ett n\u00E4rmev\u00E4rde \u00E4r. Antalet v\u00E4rdesiffror \u00E4r lika med antalet siffror i talet, exklusive inledande nollor. Om avslutande nollor \u00E4r signifikanta eller inte beror p\u00E5 hur n\u00E4rmev\u00E4rdet \u00E4r avrundat, se nedan."@sv . "317062"^^ . . . . . . "y"@en . . . . . . "1122237401"^^ . "Stellen einer Zahl werden signifikante Stellen (auch: geltende/g\u00FCltige Stellen/Ziffern) genannt, wenn sie aussagekr\u00E4ftig sind. Dazu m\u00FCssen m\u00F6gliche Abweichungen dieser Zahl innerhalb der Grenzen der Abweichung der letzten Stelle liegen. F\u00FChrende Nullen sind nicht aussagekr\u00E4ftig. Ob endende Nullen signifikant sind, muss fallweise hinterfragt werden \u2013 durch geeignete Schreibweise kann hier f\u00FCr Klarheit gesorgt werden. In Naturwissenschaft und Technik haben viele Zahlenwerte ihren Ursprung als Messwert, der mit einer Messunsicherheit behaftet ist. Diese macht den Zahlenwert an einer Dezimalstelle unsicher; alle niederwertigeren Stellen sind dann bedeutungslos. Umgekehrt ist die Anzahl der signifikanten Stellen die Mindestzahl von Stellen, die ben\u00F6tigt wird, um einen gegebenen Zahlenwert bei wissenschaftlichen Angaben ohne Verlust an Genauigkeit anzugeben. Es gibt eine nat\u00FCrliche Neigung, \u201Eganz sicher zu gehen\u201C und eine Berechnung mit einer gr\u00F6\u00DFeren Anzahl von Dezimalstellen durchzuf\u00FChren, als durch die experimentelle Genauigkeit gerechtfertigt ist. In einem solchen Fall stellt das Rechenergebnis die zu bestimmende Gr\u00F6\u00DFe falsch dar. Die Versuchung, zu viele Dezimalstellen mitzuschleppen, ist durch die Benutzung von Taschenrechnern gro\u00DF. Ein mit den anerkannten Regeln der Technik (DIN, GUM) Vertrauter kennzeichnet, wie \u201Egut\u201C ein Zahlenwert ist, indem er nur die Stellen angibt, die mit Gewissheit bekannt sind, plus eine mehr, die unsicher ist."@de . "\uC720\uD6A8\uC22B\uC790(Significant figures)\uB294 \uC218\uC758 \uC815\uD655\uB3C4\uC5D0 \uC601\uD5A5\uC744 \uC8FC\uB294 \uC22B\uC790\uC774\uB2E4. \uBCF4\uD1B5 \uB2E4\uC74C\uC758 \uACBD\uC6B0\uB97C \uC81C\uC678\uD558\uACE0 \uBAA8\uB4E0 \uC22B\uC790\uB294 \uC720\uD6A8\uC22B\uC790\uC774\uB2E4. \n* \uC18C\uC22B\uC810 \uCCAB\uC9F8\uC790\uB9AC\uC5D0\uC11C\uBD80\uD130 \uB298\uC5B4\uC838\uC788\uB294 0\uB4E4, \uC989, 0.00...0~ [EX] 0.00012\uC5D0\uC11C 4\uAC1C\uC758 0\uB4E4 \n* \uC5B4\uB5A4 \uC790\uB9AC\uC5D0\uC11C \uC77C\uC758 \uC790\uB9AC\uAE4C\uC9C0 \uC5F0\uC18D\uC801\uC73C\uB85C \uB298\uC5B4\uC838\uC788\uB294 0\uB4E4, \uC989 ~00...0 [EX] 1200\uC5D0\uC11C 00.cf) 1200.0, 1200.00\uC740 \uAC01 \uC790\uB9AC\uC218\uAC00 \uBAA8\uB450 \uC720\uD6A8\uC22B\uC790\uC774\uB2E4. \uC774\uB294 \uC18C\uC22B\uC810\uC744 \uC0AC\uC6A9\uD568\uC73C\uB85C\uC368 \uBD88\uD655\uC2E4\uD55C 0\uB4E4\uC744 \uD655\uC2E4\uD55C 0\uB4E4\uB85C \uB9CC\uB4E4\uC5B4 \uC720\uD6A8\uC22B\uC790\uC758 \uBC94\uC704\uB97C \uB298\uB824\uC900\uB2E4\uACE0 \uD574\uC11D \uAC00\uB2A5\uD558\uB2E4. \uC774\uB4E4\uC740 \uC22B\uC790\uB97C \uD45C\uD604\uD558\uB294 \uB2E8\uC704\uB97C \uBC14\uAFB8\uAC70\uB098 \uACFC\uD559\uC801 \uD45C\uAE30\uBC95\uC744 \uC4F0\uBA74 \uC5C6\uC5B4\uC9C8 \uC218 \uC788\uB294 \uC22B\uC790\uB4E4\uC774\uBBC0\uB85C \uC720\uD6A8\uC22B\uC790\uAC00 \uC544\uB2C8\uBA70, \uC790\uB9BF\uC218\uB97C \uCC44\uC6B0\uAE30 \uC704\uD574 \uC4F0\uB294 '0'\uC774\uB77C\uACE0 \uD560 \uC218 \uC788\uB2E4. \uC5B4\uB5A4 \uC22B\uC790\uB4E4\uAC04\uC758 \uACC4\uC0B0\uACB0\uACFC\uAC00 \uACC4\uC0B0\uC5D0 \uC774\uC6A9\uB41C \uC22B\uC790\uB4E4\uBCF4\uB2E4 \uC815\uBC00\uD558\uAC8C \uD45C\uD604\uB420 \uB54C\uB294 \uC720\uD6A8\uC22B\uC790\uAC00 \uC544\uB2CC \uC22B\uC790\uB4E4\uC774 \uACC4\uC0B0\uACB0\uACFC\uC5D0 \uD3EC\uD568\uB418\uC5B4 \uC788\uB2E4. \uC5B4\uB5A4 \uCE21\uC815\uAE30\uAE30\uB85C \uBB34\uC5B8\uAC00\uB97C \uCE21\uC815\uD558\uC600\uC744 \uB54C, \uAE30\uAE30\uAC00 \uCE21\uC815\uD560 \uC218 \uC788\uB294 \uC815\uBC00\uB3C4\uBCF4\uB2E4 \uB354 \uC815\uD655\uD558\uAC8C \uCE21\uC815 \uACB0\uACFC\uAC00 \uD45C\uD604\uB418\uC5C8\uB2E4\uBA74 \uACB0\uACFC\uC5D0 \uC720\uD6A8\uC22B\uC790\uAC00 \uC544\uB2CC \uC22B\uC790\uB4E4\uC774 \uD3EC\uD568\uB418\uC5B4 \uC788\uB2E4. \uC720\uD6A8\uC22B\uC790\uC758 \uAC1C\uB150\uC740 \uBC18\uC62C\uB9BC\uACFC \uD568\uAED8 \uC0AC\uC6A9\uD560 \uC218\uB3C4 \uC788\uB2E4. \uBC18\uC62C\uB9BC\uD558\uC5EC \uC720\uD6A8\uC22B\uC790 n\uAC1C\uB97C \uB9CC\uB4DC\uB294 \uC5F0\uC0B0\uC740 n\uC758 \uC790\uB9AC\uC5D0\uC11C \uBC18\uC62C\uB9BC\uD558\uB294 \uAC83\uACFC \uB2EC\uB9AC \uB2E4\uC591\uD55C \uC790\uB9BF\uC218\uC758 \uC218\uB97C \uB2E4\uB8F0 \uC218 \uC788\uC73C\uBA70 \uBD88\uD655\uC2E4\uC131\uC774 \uD070 \uC790\uB9AC\uB4E4\uC744 \uBC84\uB9BC\uC73C\uB85C\uC368 \uBBFF\uC744 \uC218 \uC788\uB294 \uC22B\uC790\uC758 \uAE30\uC220\uC744 \uC6A9\uC774\uD558\uAC8C \uB9CC\uB4E0\uB2E4."@ko . . "\u6709\u52B9\u6570\u5B57\uFF08\u3086\u3046\u3053\u3046\u3059\u3046\u3058\u3001\u82F1\u8A9E: significant figures, significant digits\uFF09\u3068\u306F\u3001\u6E2C\u5B9A\u7D50\u679C\u306A\u3069\u3092\u8868\u3059\u6570\u5B57\u306E\u3046\u3061\u3067\u3001\u4F4D\u53D6\u308A\u3092\u793A\u3059\u3060\u3051\u306E\u30BC\u30ED\u3092\u9664\u3044\u305F\u610F\u5473\u306E\u3042\u308B\u6570\u5B57\u3067\u3042\u308B\u3002\u8AA4\u5DEE\u3092\u542B\u3080\u6841\u3088\u308A\u4E0A\u306E\u6841\u3092\u6307\u3059\u3002"@ja . . . . "\u6709\u52B9\u6570\u5B57"@ja .