. . . . "\u51EF\u83B1-\u514B\u83B1\u56E0\u6A21\u578B"@zh . "\u041F\u0440\u043E\u0435\u043A\u0442\u0438\u0432\u043D\u0430\u044F \u043C\u043E\u0434\u0435\u043B\u044C (\u043D\u0430\u0437\u044B\u0432\u0430\u0435\u043C\u0430\u044F \u0442\u0430\u043A\u0436\u0435 \u043C\u043E\u0434\u0435\u043B\u044C \u041A\u043B\u0435\u0439\u043D\u0430, \u043C\u043E\u0434\u0435\u043B\u044C \u0411\u0435\u043B\u044C\u0442\u0440\u0430\u043C\u0438 \u2014 \u041A\u043B\u0435\u0439\u043D\u0430, \u043C\u043E\u0434\u0435\u043B\u044C \u041A\u044D\u043B\u0438 \u2014 \u041A\u043B\u0435\u0439\u043D\u0430) \u2014 \u043C\u043E\u0434\u0435\u043B\u044C \u043F\u043B\u0430\u043D\u0438\u043C\u0435\u0442\u0440\u0438\u0438 \u041B\u043E\u0431\u0430\u0447\u0435\u0432\u0441\u043A\u043E\u0433\u043E. \u041F\u0440\u0435\u0434\u043B\u043E\u0436\u0435\u043D\u0430 \u0438\u0442\u0430\u043B\u044C\u044F\u043D\u0441\u043A\u0438\u043C \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u043E\u043C \u042D\u0443\u0434\u0436\u0435\u043D\u0438\u043E \u0411\u0435\u043B\u044C\u0442\u0440\u0430\u043C\u0438.\u041D\u0435\u043C\u0435\u0446\u043A\u0438\u0439 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A \u0424\u0435\u043B\u0438\u043A\u0441 \u041A\u043B\u0435\u0439\u043D \u0440\u0430\u0437\u0440\u0430\u0431\u043E\u0442\u0430\u043B \u0435\u0451 \u043D\u0435\u0437\u0430\u0432\u0438\u0441\u0438\u043C\u043E. \u0421 \u0435\u0451 \u043F\u043E\u043C\u043E\u0449\u044C\u044E \u0434\u043E\u043A\u0430\u0437\u044B\u0432\u0430\u0435\u0442\u0441\u044F \u043D\u0435\u043F\u0440\u043E\u0442\u0438\u0432\u043E\u0440\u0435\u0447\u0438\u0432\u043E\u0441\u0442\u044C \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0438\u0438 \u041B\u043E\u0431\u0430\u0447\u0435\u0432\u0441\u043A\u043E\u0433\u043E \u0432 \u043F\u0440\u0435\u0434\u043F\u043E\u043B\u043E\u0436\u0435\u043D\u0438\u0438 \u043D\u0435\u043F\u0440\u043E\u0442\u0438\u0432\u043E\u0440\u0435\u0447\u0438\u0432\u043E\u0441\u0442\u0438 \u0435\u0432\u043A\u043B\u0438\u0434\u043E\u0432\u043E\u0439 \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0438\u0438."@ru . . . . . . . . "\u51E0\u4F55\u4E2D\uFF0C\u51EF\u52D2-\u514B\u83B1\u56E0\u6A21\u578B\uFF08Cayley\u2013Klein model\uFF09\uFF0C\u4E5F\u79F0\u4E3A\u5C04\u5F71\u6A21\u578B\uFF08projective model\uFF09\u3001\u514B\u83B1\u56E0\u5706\u76D8\u6A21\u578B\uFF08Klein disk model\uFF09\u6216\u8D1D\u5C14\u7279\u62C9\u7C73-\u514B\u83B1\u56E0\u6A21\u578B\uFF08Beltrami\u2013Klein model\uFF09\uFF0C\u662F n-\u7EF4\u53CC\u66F2\u51E0\u4F55\u7684\u4E00\u4E2A\u6A21\u578B\uFF0C\u5176\u4E2D\u70B9\u7531 n-\u7EF4\u5355\u4F4D\u7403\uFF08\u4E8C\u7EF4\u65F6\u6216\u79F0\u5355\u4F4D\u5706\u76D8\uFF09\u4E2D\u7684\u70B9\u8868\u793A\uFF0C\u76F4\u7EBF\u7531\u7AEF\u70B9\u4F4D\u4E8E\u8FB9\u754C\u7403\u9762\u7684\u76F4\u7EBF\u6BB5\uFF08\u5373\u5F26\uFF09\u8868\u793A\u3002\u6B64\u6A21\u578B\u6700\u5148\u51FA\u73B0\u4E8E\u8D1D\u5C14\u7279\u62C9\u7C731868\u5E74\u7684\u4E24\u7BC7\u8BBA\u6587\u4E2D\uFF0C\u9996\u5148\u662F n = 2 \u7136\u540E\u662F\u4E00\u822C\u7684 n\uFF0C\u7528\u4E8E\u8BC1\u660E\u53CC\u66F2\u51E0\u4F55\u4E0E\u901A\u5E38\u6B27\u51E0\u91CC\u5F97\u51E0\u4F55\u7684\uFF08equiconsistency\uFF09\u3002 \u8DDD\u79BB\u516C\u5F0F\u6700\u5148\u7531\u963F\u745F\u00B7\u51EF\u83B1\u5728\u5C04\u5F71\u548C\u7403\u9762\u51E0\u4F55\u7684\u60C5\u5F62\u4E0B\u5199\u51FA\u3002\u83F2\u5229\u514B\u65AF\u00B7\u514B\u83B1\u56E0\u610F\u8BC6\u5230\u5B83\u5BF9\u975E\u6B27\u51E0\u91CC\u5F97\u51E0\u4F55\u7684\u91CD\u8981\u6027\u5E76\u666E\u53CA\u4E86\u8FD9\u4E2A\u8BBA\u9898\u3002"@zh . . . . . "\u51E0\u4F55\u4E2D\uFF0C\u51EF\u52D2-\u514B\u83B1\u56E0\u6A21\u578B\uFF08Cayley\u2013Klein model\uFF09\uFF0C\u4E5F\u79F0\u4E3A\u5C04\u5F71\u6A21\u578B\uFF08projective model\uFF09\u3001\u514B\u83B1\u56E0\u5706\u76D8\u6A21\u578B\uFF08Klein disk model\uFF09\u6216\u8D1D\u5C14\u7279\u62C9\u7C73-\u514B\u83B1\u56E0\u6A21\u578B\uFF08Beltrami\u2013Klein model\uFF09\uFF0C\u662F n-\u7EF4\u53CC\u66F2\u51E0\u4F55\u7684\u4E00\u4E2A\u6A21\u578B\uFF0C\u5176\u4E2D\u70B9\u7531 n-\u7EF4\u5355\u4F4D\u7403\uFF08\u4E8C\u7EF4\u65F6\u6216\u79F0\u5355\u4F4D\u5706\u76D8\uFF09\u4E2D\u7684\u70B9\u8868\u793A\uFF0C\u76F4\u7EBF\u7531\u7AEF\u70B9\u4F4D\u4E8E\u8FB9\u754C\u7403\u9762\u7684\u76F4\u7EBF\u6BB5\uFF08\u5373\u5F26\uFF09\u8868\u793A\u3002\u6B64\u6A21\u578B\u6700\u5148\u51FA\u73B0\u4E8E\u8D1D\u5C14\u7279\u62C9\u7C731868\u5E74\u7684\u4E24\u7BC7\u8BBA\u6587\u4E2D\uFF0C\u9996\u5148\u662F n = 2 \u7136\u540E\u662F\u4E00\u822C\u7684 n\uFF0C\u7528\u4E8E\u8BC1\u660E\u53CC\u66F2\u51E0\u4F55\u4E0E\u901A\u5E38\u6B27\u51E0\u91CC\u5F97\u51E0\u4F55\u7684\uFF08equiconsistency\uFF09\u3002 \u8DDD\u79BB\u516C\u5F0F\u6700\u5148\u7531\u963F\u745F\u00B7\u51EF\u83B1\u5728\u5C04\u5F71\u548C\u7403\u9762\u51E0\u4F55\u7684\u60C5\u5F62\u4E0B\u5199\u51FA\u3002\u83F2\u5229\u514B\u65AF\u00B7\u514B\u83B1\u56E0\u610F\u8BC6\u5230\u5B83\u5BF9\u975E\u6B27\u51E0\u91CC\u5F97\u51E0\u4F55\u7684\u91CD\u8981\u6027\u5E76\u666E\u53CA\u4E86\u8FD9\u4E2A\u8BBA\u9898\u3002"@zh . "\u041F\u0440\u043E\u0454\u043A\u0442\u0438\u0432\u043D\u0430 \u043C\u043E\u0434\u0435\u043B\u044C (\u043C\u043E\u0434\u0435\u043B\u044C \u041A\u043B\u044F\u0439\u043D\u0430, \u043C\u043E\u0434\u0435\u043B\u044C \u0411\u0435\u043B\u044C\u0442\u0440\u0430\u043C\u0456 \u2014 \u041A\u043B\u044F\u0439\u043D\u0430) \u2014 \u043C\u043E\u0434\u0435\u043B\u044C \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0456\u0457 \u041B\u043E\u0431\u0430\u0447\u0435\u0432\u0441\u043A\u043E\u0433\u043E, \u0437\u0430\u043F\u0440\u043E\u043F\u043E\u043D\u043E\u0432\u0430\u043D\u0430 \u0456\u0442\u0430\u043B\u0456\u0439\u0441\u044C\u043A\u0438\u043C \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u043E\u043C \u0415\u0443\u0434\u0436\u0435\u043D\u0456\u043E \u0411\u0435\u043B\u044C\u0442\u0440\u0430\u043C\u0456. \u041D\u0456\u043C\u0435\u0446\u044C\u043A\u0438\u0439 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A \u0424\u0435\u043B\u0456\u043A\u0441 \u041A\u043B\u044F\u0439\u043D \u0440\u043E\u0437\u0440\u043E\u0431\u0438\u0432 \u0457\u0457 \u043D\u0435\u0437\u0430\u043B\u0435\u0436\u043D\u043E. \u0417\u0430 \u0457\u0457 \u0434\u043E\u043F\u043E\u043C\u043E\u0433\u043E\u044E \u0434\u043E\u0432\u043E\u0434\u0438\u0442\u044C\u0441\u044F \u043D\u0435\u0441\u0443\u043F\u0435\u0440\u0435\u0447\u043B\u0438\u0432\u0456\u0441\u0442\u044C \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0456\u0457 \u041B\u043E\u0431\u0430\u0447\u0435\u0432\u0441\u044C\u043A\u043E\u0433\u043E \u0432 \u043F\u0440\u0438\u043F\u0443\u0449\u0435\u043D\u043D\u0456 \u043D\u0435\u0441\u0443\u043F\u0435\u0440\u0435\u0447\u043B\u0438\u0432\u043E\u0441\u0442\u0456 \u0435\u0432\u043A\u043B\u0456\u0434\u043E\u0432\u043E\u0457 \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0456\u0457."@uk . "En math\u00E9matiques, et plus pr\u00E9cis\u00E9ment en g\u00E9om\u00E9trie non euclidienne, le mod\u00E8le de Beltrami-Klein, \u00E9galement appel\u00E9 mod\u00E8le projectif ou mod\u00E8le du disque de Klein, est un mod\u00E8le de g\u00E9om\u00E9trie hyperbolique de dimension n dans lequel l'espace hyperbolique est mod\u00E9lis\u00E9 par la boule unit\u00E9 euclidienne ouverte de rayon 1 de dimension n, les points de l'espace hyperbolique \u00E9tant les points de la boule unit\u00E9, et les droites de l'espace hyperbolique \u00E9tant les cordes de la boule unit\u00E9. Le terme fait sa premi\u00E8re apparition dans les deux m\u00E9moires d'Eugenio Beltrami publi\u00E9s en 1868. Le premier \u00E9tudie le cas n = 2 et montre l'\u00E9quiconsistance de la g\u00E9om\u00E9trie hyperbolique avec la g\u00E9om\u00E9trie euclidienne usuelle La relation entre le mod\u00E8le de Beltrami-Klein et le disque de Poincar\u00E9 est analogue, en g\u00E9om\u00E9trie hyperbolique, aux relations entre la projection gnomonique et la projection st\u00E9r\u00E9ographique pour une sph\u00E8re. En particulier, le premier pr\u00E9serve les lignes droites l\u00E0 o\u00F9 le second pr\u00E9serve les angles. La distance est donn\u00E9 par la m\u00E9trique de Cayley-Klein. Celle-ci a d'abord \u00E9t\u00E9 d\u00E9crite par Arthur Cayley dans le cadre de la g\u00E9om\u00E9trie projective et de la g\u00E9om\u00E9trie sph\u00E9rique. Felix Klein reconnut l'importance de cette distance pour les g\u00E9om\u00E9tries non euclidiennes et a popularis\u00E9 le sujet."@fr . . . . . "In der Geometrie versteht man unter dem Beltrami-Klein-Modell ein Modell der hyperbolischen Ebene. Es ist eines der Standardbeispiele einer nicht-euklidischen Geometrie und geht auf den italienischen Mathematiker Eugenio Beltrami (1835\u20131900) und den deutschen Mathematiker Felix Klein (1849\u20131925) zur\u00FCck. Im deutschen Sprachraum wird das Modell oft einfach als Kleinsches Modell bezeichnet; manchmal auch als Modell von Cayley und Klein, wobei die letztere Bezeichnung der Tatsache Rechnung tr\u00E4gt, dass die Entwicklung des Modells durch Felix Klein neben den Untersuchungen von Eugenio Beltrami in besonderem Ma\u00DFe auch Ergebnisse von Arthur Cayley (1821\u20131895) ber\u00FCcksichtigt. Popul\u00E4r wird das Beltrami-Klein-Modell von einzelnen Autoren auch Bierdeckelgeometrie genannt. In Beltramis Definition handelt es sich um eine Realisierung der hyperbolischen Ebene als Riemannsche Mannigfaltigkeit, w\u00E4hrend Cayley und Klein das Modell als Teilmenge der projektiven Ebene betrachteten. Ende des 19. Jahrhunderts stellte David Hilbert ein Axiomensystem der Geometrie auf, f\u00FCr welches die Cayley-Klein-Ebene ebenfalls ein Modell ist."@de . . "Beltrami\u2013Klein model"@en . "4792791"^^ . . . . . . . . . . . . . . . . "In geometry, the Beltrami\u2013Klein model, also called the projective model, Klein disk model, and the Cayley\u2013Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk (or n-dimensional unit ball) and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere. The Beltrami\u2013Klein model is named after the Italian geometer Eugenio Beltrami and the German Felix Klein while \"Cayley\" in Cayley\u2013Klein model refers to the English geometer Arthur Cayley. The Beltrami\u2013Klein model is analogous to the gnomonic projection of spherical geometry, in that geodesics (great circles in spherical geometry) are mapped to straight lines. This model is not conformal, meaning that angles and circles are distorted, whereas the Poincar\u00E9 disk model preserves these. In this model, lines and segments are straight Euclidean segments, whereas in the Poincar\u00E9 disk model, lines are arcs that meet the boundary orthogonally."@en . . . "\u041F\u0440\u043E\u0454\u043A\u0442\u0438\u0432\u043D\u0430 \u043C\u043E\u0434\u0435\u043B\u044C (\u043C\u043E\u0434\u0435\u043B\u044C \u041A\u043B\u044F\u0439\u043D\u0430, \u043C\u043E\u0434\u0435\u043B\u044C \u0411\u0435\u043B\u044C\u0442\u0440\u0430\u043C\u0456 \u2014 \u041A\u043B\u044F\u0439\u043D\u0430) \u2014 \u043C\u043E\u0434\u0435\u043B\u044C \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0456\u0457 \u041B\u043E\u0431\u0430\u0447\u0435\u0432\u0441\u043A\u043E\u0433\u043E, \u0437\u0430\u043F\u0440\u043E\u043F\u043E\u043D\u043E\u0432\u0430\u043D\u0430 \u0456\u0442\u0430\u043B\u0456\u0439\u0441\u044C\u043A\u0438\u043C \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u043E\u043C \u0415\u0443\u0434\u0436\u0435\u043D\u0456\u043E \u0411\u0435\u043B\u044C\u0442\u0440\u0430\u043C\u0456. \u041D\u0456\u043C\u0435\u0446\u044C\u043A\u0438\u0439 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A \u0424\u0435\u043B\u0456\u043A\u0441 \u041A\u043B\u044F\u0439\u043D \u0440\u043E\u0437\u0440\u043E\u0431\u0438\u0432 \u0457\u0457 \u043D\u0435\u0437\u0430\u043B\u0435\u0436\u043D\u043E. \u0417\u0430 \u0457\u0457 \u0434\u043E\u043F\u043E\u043C\u043E\u0433\u043E\u044E \u0434\u043E\u0432\u043E\u0434\u0438\u0442\u044C\u0441\u044F \u043D\u0435\u0441\u0443\u043F\u0435\u0440\u0435\u0447\u043B\u0438\u0432\u0456\u0441\u0442\u044C \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0456\u0457 \u041B\u043E\u0431\u0430\u0447\u0435\u0432\u0441\u044C\u043A\u043E\u0433\u043E \u0432 \u043F\u0440\u0438\u043F\u0443\u0449\u0435\u043D\u043D\u0456 \u043D\u0435\u0441\u0443\u043F\u0435\u0440\u0435\u0447\u043B\u0438\u0432\u043E\u0441\u0442\u0456 \u0435\u0432\u043A\u043B\u0456\u0434\u043E\u0432\u043E\u0457 \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0456\u0457."@uk . . . . . "Mod\u00E8le de Klein"@fr . . "1108708053"^^ . . . . . . . . . . . . . . . . . . "Il modello di Klein \u00E8 un modello di geometria iperbolica, introdotto da Eugenio Beltrami per dimostrare l'indipendenza del V postulato di Euclide dai primi quattro. La descrizione del modello come spazio metrico \u00E8 dovuta successivamente a Arthur Cayley ed approfondita successivamente da Felix Klein."@it . . . . . . . . . . "In geometry, the Beltrami\u2013Klein model, also called the projective model, Klein disk model, and the Cayley\u2013Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk (or n-dimensional unit ball) and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere. The Beltrami\u2013Klein model is named after the Italian geometer Eugenio Beltrami and the German Felix Klein while \"Cayley\" in Cayley\u2013Klein model refers to the English geometer Arthur Cayley."@en . . "En math\u00E9matiques, et plus pr\u00E9cis\u00E9ment en g\u00E9om\u00E9trie non euclidienne, le mod\u00E8le de Beltrami-Klein, \u00E9galement appel\u00E9 mod\u00E8le projectif ou mod\u00E8le du disque de Klein, est un mod\u00E8le de g\u00E9om\u00E9trie hyperbolique de dimension n dans lequel l'espace hyperbolique est mod\u00E9lis\u00E9 par la boule unit\u00E9 euclidienne ouverte de rayon 1 de dimension n, les points de l'espace hyperbolique \u00E9tant les points de la boule unit\u00E9, et les droites de l'espace hyperbolique \u00E9tant les cordes de la boule unit\u00E9. Le terme fait sa premi\u00E8re apparition dans les deux m\u00E9moires d'Eugenio Beltrami publi\u00E9s en 1868. Le premier \u00E9tudie le cas n = 2 et montre l'\u00E9quiconsistance de la g\u00E9om\u00E9trie hyperbolique avec la g\u00E9om\u00E9trie euclidienne usuelle"@fr . . . . . . . . "Il modello di Klein \u00E8 un modello di geometria iperbolica, introdotto da Eugenio Beltrami per dimostrare l'indipendenza del V postulato di Euclide dai primi quattro. La descrizione del modello come spazio metrico \u00E8 dovuta successivamente a Arthur Cayley ed approfondita successivamente da Felix Klein. Come il disco di Poincar\u00E9, il modello di Klein \u00E8 una palla -dimensionale. La geometria \u00E8 definita per\u00F2 in modo differente: le geodetiche nel modello di Klein sono infatti segmenti e non archi di circonferenza. La maggiore semplicit\u00E0 nella descrizione delle geodetiche \u00E8 per\u00F2 controbilanciata da una maggiore complicazione nella descrizione degli angoli fra queste: il modello di Klein non \u00E8 infatti un modello conforme, gli angoli fra rette non sono cio\u00E8 quelli usuali del piano euclideo."@it . . . . . . . . . "In der Geometrie versteht man unter dem Beltrami-Klein-Modell ein Modell der hyperbolischen Ebene. Es ist eines der Standardbeispiele einer nicht-euklidischen Geometrie und geht auf den italienischen Mathematiker Eugenio Beltrami (1835\u20131900) und den deutschen Mathematiker Felix Klein (1849\u20131925) zur\u00FCck. Im deutschen Sprachraum wird das Modell oft einfach als Kleinsches Modell bezeichnet; manchmal auch als Modell von Cayley und Klein, wobei die letztere Bezeichnung der Tatsache Rechnung tr\u00E4gt, dass die Entwicklung des Modells durch Felix Klein neben den Untersuchungen von Eugenio Beltrami in besonderem Ma\u00DFe auch Ergebnisse von Arthur Cayley (1821\u20131895) ber\u00FCcksichtigt. Popul\u00E4r wird das Beltrami-Klein-Modell von einzelnen Autoren auch Bierdeckelgeometrie genannt. In Beltramis Definition hande"@de . . . . . . . . "21271"^^ . . "Modello di Klein"@it . . . . . . . . "\u041F\u0440\u043E\u0435\u043A\u0442\u0438\u0432\u043D\u0430\u044F \u043C\u043E\u0434\u0435\u043B\u044C (\u043D\u0430\u0437\u044B\u0432\u0430\u0435\u043C\u0430\u044F \u0442\u0430\u043A\u0436\u0435 \u043C\u043E\u0434\u0435\u043B\u044C \u041A\u043B\u0435\u0439\u043D\u0430, \u043C\u043E\u0434\u0435\u043B\u044C \u0411\u0435\u043B\u044C\u0442\u0440\u0430\u043C\u0438 \u2014 \u041A\u043B\u0435\u0439\u043D\u0430, \u043C\u043E\u0434\u0435\u043B\u044C \u041A\u044D\u043B\u0438 \u2014 \u041A\u043B\u0435\u0439\u043D\u0430) \u2014 \u043C\u043E\u0434\u0435\u043B\u044C \u043F\u043B\u0430\u043D\u0438\u043C\u0435\u0442\u0440\u0438\u0438 \u041B\u043E\u0431\u0430\u0447\u0435\u0432\u0441\u043A\u043E\u0433\u043E. \u041F\u0440\u0435\u0434\u043B\u043E\u0436\u0435\u043D\u0430 \u0438\u0442\u0430\u043B\u044C\u044F\u043D\u0441\u043A\u0438\u043C \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u043E\u043C \u042D\u0443\u0434\u0436\u0435\u043D\u0438\u043E \u0411\u0435\u043B\u044C\u0442\u0440\u0430\u043C\u0438.\u041D\u0435\u043C\u0435\u0446\u043A\u0438\u0439 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A \u0424\u0435\u043B\u0438\u043A\u0441 \u041A\u043B\u0435\u0439\u043D \u0440\u0430\u0437\u0440\u0430\u0431\u043E\u0442\u0430\u043B \u0435\u0451 \u043D\u0435\u0437\u0430\u0432\u0438\u0441\u0438\u043C\u043E. \u0421 \u0435\u0451 \u043F\u043E\u043C\u043E\u0449\u044C\u044E \u0434\u043E\u043A\u0430\u0437\u044B\u0432\u0430\u0435\u0442\u0441\u044F \u043D\u0435\u043F\u0440\u043E\u0442\u0438\u0432\u043E\u0440\u0435\u0447\u0438\u0432\u043E\u0441\u0442\u044C \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0438\u0438 \u041B\u043E\u0431\u0430\u0447\u0435\u0432\u0441\u043A\u043E\u0433\u043E \u0432 \u043F\u0440\u0435\u0434\u043F\u043E\u043B\u043E\u0436\u0435\u043D\u0438\u0438 \u043D\u0435\u043F\u0440\u043E\u0442\u0438\u0432\u043E\u0440\u0435\u0447\u0438\u0432\u043E\u0441\u0442\u0438 \u0435\u0432\u043A\u043B\u0438\u0434\u043E\u0432\u043E\u0439 \u0433\u0435\u043E\u043C\u0435\u0442\u0440\u0438\u0438."@ru . . . . . . . . "\u041F\u0440\u043E\u0454\u043A\u0442\u0438\u0432\u043D\u0430 \u043C\u043E\u0434\u0435\u043B\u044C"@uk . . . "\u041F\u0440\u043E\u0435\u043A\u0442\u0438\u0432\u043D\u0430\u044F \u043C\u043E\u0434\u0435\u043B\u044C"@ru . "Beltrami-Klein-Modell"@de . .