. "\u041F\u043E\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0430 \u041A\u0430\u0440\u0442\u0430\u043D\u0430"@ru . "In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising (if for all , then ). They were introduced by \u00C9lie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic . Kac\u2013Moody algebras and generalized Kac\u2013Moody algebras also have subalgebras that play the same role as the Cartan subalgebras of semisimple Lie algebras (over a field of characteristic zero)."@en . . . . . . "\u0412 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u0446\u0456, \u0437\u043E\u043A\u0440\u0435\u043C\u0430 \u0442\u0435\u043E\u0440\u0456\u0457 \u0430\u043B\u0433\u0435\u0431\u0440 \u041B\u0456, \u043F\u0456\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0430\u043C\u0438 \u041A\u0430\u0440\u0442\u0430\u043D\u0430 \u043D\u0430\u0437\u0438\u0432\u0430\u044E\u0442\u044C\u0441\u044F \u043F\u0435\u0432\u043D\u0456 \u043D\u0456\u043B\u044C\u043F\u043E\u0442\u0435\u043D\u0442\u043D\u0456 \u043F\u0456\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0438, \u044F\u043A\u0456 \u0437\u043E\u043A\u0440\u0435\u043C\u0430 \u043C\u0430\u044E\u0442\u044C \u0432\u0435\u043B\u0438\u043A\u0435 \u0437\u043D\u0430\u0447\u0435\u043D\u043D\u044F \u0434\u043B\u044F \u043A\u043B\u0430\u0441\u0438\u0444\u0456\u043A\u0430\u0446\u0456\u0457 \u043D\u0430\u043F\u0456\u0432\u043F\u0440\u043E\u0441\u0442\u0438\u0445 \u0430\u043B\u0433\u0435\u0431\u0440 \u041B\u0456 \u0456 \u0432 \u0442\u0435\u043E\u0440\u0456\u0457 \u0441\u0438\u043C\u0435\u0442\u0440\u0438\u0447\u043D\u0438\u0445 \u043F\u0440\u043E\u0441\u0442\u043E\u0440\u0456\u0432. \u041D\u0430\u0437\u0432\u0430\u043D\u0456 \u043D\u0430 \u0447\u0435\u0441\u0442\u044C \u0444\u0440\u0430\u043D\u0446\u0443\u0437\u044C\u043A\u043E\u0433\u043E \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u0430 \u0415\u043B\u0456 \u041A\u0430\u0440\u0442\u0430\u043D\u0430."@uk . . . . . "\u5609\u5F53\u5B50\u4EE3\u6570"@zh . "\u041F\u0456\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0430 \u041A\u0430\u0440\u0442\u0430\u043D\u0430"@uk . "\u0412 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u0446\u0456, \u0437\u043E\u043A\u0440\u0435\u043C\u0430 \u0442\u0435\u043E\u0440\u0456\u0457 \u0430\u043B\u0433\u0435\u0431\u0440 \u041B\u0456, \u043F\u0456\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0430\u043C\u0438 \u041A\u0430\u0440\u0442\u0430\u043D\u0430 \u043D\u0430\u0437\u0438\u0432\u0430\u044E\u0442\u044C\u0441\u044F \u043F\u0435\u0432\u043D\u0456 \u043D\u0456\u043B\u044C\u043F\u043E\u0442\u0435\u043D\u0442\u043D\u0456 \u043F\u0456\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0438, \u044F\u043A\u0456 \u0437\u043E\u043A\u0440\u0435\u043C\u0430 \u043C\u0430\u044E\u0442\u044C \u0432\u0435\u043B\u0438\u043A\u0435 \u0437\u043D\u0430\u0447\u0435\u043D\u043D\u044F \u0434\u043B\u044F \u043A\u043B\u0430\u0441\u0438\u0444\u0456\u043A\u0430\u0446\u0456\u0457 \u043D\u0430\u043F\u0456\u0432\u043F\u0440\u043E\u0441\u0442\u0438\u0445 \u0430\u043B\u0433\u0435\u0431\u0440 \u041B\u0456 \u0456 \u0432 \u0442\u0435\u043E\u0440\u0456\u0457 \u0441\u0438\u043C\u0435\u0442\u0440\u0438\u0447\u043D\u0438\u0445 \u043F\u0440\u043E\u0441\u0442\u043E\u0440\u0456\u0432. \u041D\u0430\u0437\u0432\u0430\u043D\u0456 \u043D\u0430 \u0447\u0435\u0441\u0442\u044C \u0444\u0440\u0430\u043D\u0446\u0443\u0437\u044C\u043A\u043E\u0433\u043E \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u0430 \u0415\u043B\u0456 \u041A\u0430\u0440\u0442\u0430\u043D\u0430."@uk . . . . . . . . . . "\u5728\u6570\u5B66\u4E2D\uFF0C\u5609\u5F53\u5B50\u4EE3\u6570\uFF08Cartan subalgebra\uFF0C\u7F29\u5199\u4E3A CSA\uFF09\uFF0C\u662F\u4E00\u4E2A\u674E\u4EE3\u6570 \u7684\u81EA\u6B63\u89C4\u5316\uFF08\u5982\u679C \u5BF9\u6240\u6709 \uFF0C\u90A3\u4E48\uFF09\u3001\u5E42\u96F6\u5B50\u4EE3\u6570\uFF0C\u901A\u5E38\u7528 \u8868\u793A\u3002"@zh . . . "\u041F\u043E\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0430 \u041A\u0430\u0440\u0442\u0430\u043D\u0430 \u2014 \u043F\u043E\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0430 \u041B\u0438 , \u0440\u0430\u0432\u043D\u0430\u044F \u0441\u0432\u043E\u0435\u043C\u0443 \u043D\u043E\u0440\u043C\u0430\u043B\u0438\u0437\u0430\u0442\u043E\u0440\u0443: \n* \u0434\u043B\u044F \u043D\u0435\u043A\u043E\u0442\u043E\u0440\u043E\u0433\u043E (\u043D\u0438\u043B\u044C\u043F\u043E\u0442\u0435\u043D\u0442\u043D\u043E\u0441\u0442\u044C), \n* (\u0441\u0430\u043C\u043E\u043D\u043E\u0440\u043C\u0430\u043B\u0438\u0437\u043E\u0432\u0430\u043D\u043D\u043E\u0441\u0442\u044C). \u041F\u043E\u043D\u044F\u0442\u0438\u0435 \u0438\u043C\u0435\u0435\u0442 \u0431\u043E\u043B\u044C\u0448\u043E\u0435 \u0437\u043D\u0430\u0447\u0435\u043D\u0438\u0435 \u0434\u043B\u044F \u043A\u043B\u0430\u0441\u0441\u0438\u0444\u0438\u043A\u0430\u0446\u0438\u0438 \u043F\u043E\u043B\u0443\u043F\u0440\u043E\u0441\u0442\u044B\u0445 \u0430\u043B\u0433\u0435\u0431\u0440 \u041B\u0438 \u0438 \u0432 \u0442\u0435\u043E\u0440\u0438\u0438 \u0441\u0438\u043C\u043C\u0435\u0442\u0440\u0438\u0447\u043D\u044B\u0445 \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432. \u041D\u0430\u0437\u0432\u0430\u043D\u0430 \u0432 \u0447\u0435\u0441\u0442\u044C \u0444\u0440\u0430\u043D\u0446\u0443\u0437\u0441\u043A\u043E\u0433\u043E \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u0430 \u042D\u043B\u0438 \u041A\u0430\u0440\u0442\u0430\u043D\u0430. \u042D\u043A\u0432\u0438\u0432\u0430\u043B\u0435\u043D\u0442\u043D\u043E\u0435 \u043E\u043F\u0440\u0435\u0434\u0435\u043B\u0435\u043D\u0438\u0435: \u043D\u0438\u043B\u044C\u043F\u043E\u0442\u0435\u043D\u0442\u043D\u0430\u044F \u043F\u043E\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0430 \u044F\u0432\u043B\u044F\u0435\u0442\u0441\u044F \u043F\u043E\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u043E\u0439 \u041A\u0430\u0440\u0442\u0430\u043D\u0430, \u0435\u0441\u043B\u0438 \u043E\u043D\u0430 \u0440\u0430\u0432\u043D\u0430 \u0441\u0432\u043E\u0435\u0439 \u043D\u0443\u043B\u044C-\u043A\u043E\u043C\u043F\u043E\u043D\u0435\u043D\u0442\u0435 \u0424\u0438\u0442\u0442\u0438\u043D\u0433\u0430, \u0442\u043E \u0435\u0441\u0442\u044C \u043C\u043D\u043E\u0436\u0435\u0441\u0442\u0432\u0443: \u0433\u0434\u0435 \u2014 \u043F\u0440\u0438\u0441\u043E\u0435\u0434\u0438\u043D\u0451\u043D\u043D\u043E\u0435 \u043F\u0440\u0435\u0434\u0441\u0442\u0430\u0432\u043B\u0435\u043D\u0438\u0435 \u0433\u0440\u0443\u043F\u043F\u044B \u041B\u0438."@ru . . . "In der Mathematik, speziell in der Theorie der Lie-Algebren, werden Cartan-Unteralgebren unter anderem in der Klassifikation der halbeinfachen Lie-Algebren und in der Theorie der symmetrischen R\u00E4ume verwendet. Der Rang einer Lie-Algebra (oder der zugeh\u00F6rigen Lie-Gruppe) ist definiert als die Dimension der Cartan-Unteralgebra. Ein Beispiel einer Cartan-Unteralgebra ist die Algebra der Diagonalmatrizen."@de . "\uB9AC \uB300\uC218 \uC774\uB860\uC5D0\uC11C, \uCE74\uB974\uD0D5 \uBD80\uBD84 \uB300\uC218(Cartan\u90E8\u5206\u4EE3\u6578, \uC601\uC5B4: Cartan subalgebra)\uB294 \uB9AC \uB300\uC218\uC758 \uCD5C\uB300 \uC544\uBCA8 \uBD80\uBD84 \uB300\uC218\uC758 \uC77C\uC885\uC774\uB2E4."@ko . . . "Cartan subalgebra"@en . . . "Popov"@en . "14377"^^ . . . "\uB9AC \uB300\uC218 \uC774\uB860\uC5D0\uC11C, \uCE74\uB974\uD0D5 \uBD80\uBD84 \uB300\uC218(Cartan\u90E8\u5206\u4EE3\u6578, \uC601\uC5B4: Cartan subalgebra)\uB294 \uB9AC \uB300\uC218\uC758 \uCD5C\uB300 \uC544\uBCA8 \uBD80\uBD84 \uB300\uC218\uC758 \uC77C\uC885\uC774\uB2E4."@ko . . . . . . "\u30AB\u30EB\u30BF\u30F3\u90E8\u5206\u74B0"@ja . . . "Cartan-Unteralgebra"@de . . . . . . . "\u6570\u5B66\u306B\u304A\u3044\u3066\uFF0C\u30AB\u30EB\u30BF\u30F3\u90E8\u5206\u74B0\uFF08\u30AB\u30EB\u30BF\u30F3\u3076\u3076\u3093\u304B\u3093\uFF0C\u82F1: Cartan subalgebra\uFF0C\u3057\u3070\u3057\u3070 CSA \u3068\u7565\u3055\u308C\u308B\uFF09\u3068\u306F\uFF0C\u30EA\u30FC\u74B0 \u306E\u51AA\u96F6\u90E8\u5206\u74B0 \u3067\u3042\u3063\u3066\uFF0C\u306A\u3082\u306E\uFF08\u3059\u3079\u3066\u306E \u306B\u5BFE\u3057\u3066 \u3067\u3042\u308B\u306A\u3089\u3070\uFF0C \u3067\u3042\u308B\u3082\u306E\uFF09\u306E\u3053\u3068\u3067\u3042\u308B\uFF0E\u30A8\u30EA\u30FB\u30AB\u30EB\u30BF\u30F3\u306B\u3088\u3063\u3066\u5F7C\u306E\u535A\u58EB\u8AD6\u6587\u306B\u304A\u3044\u3066\u5C0E\u5165\u3055\u308C\u305F\uFF0E"@ja . "\u6570\u5B66\u306B\u304A\u3044\u3066\uFF0C\u30AB\u30EB\u30BF\u30F3\u90E8\u5206\u74B0\uFF08\u30AB\u30EB\u30BF\u30F3\u3076\u3076\u3093\u304B\u3093\uFF0C\u82F1: Cartan subalgebra\uFF0C\u3057\u3070\u3057\u3070 CSA \u3068\u7565\u3055\u308C\u308B\uFF09\u3068\u306F\uFF0C\u30EA\u30FC\u74B0 \u306E\u51AA\u96F6\u90E8\u5206\u74B0 \u3067\u3042\u3063\u3066\uFF0C\u306A\u3082\u306E\uFF08\u3059\u3079\u3066\u306E \u306B\u5BFE\u3057\u3066 \u3067\u3042\u308B\u306A\u3089\u3070\uFF0C \u3067\u3042\u308B\u3082\u306E\uFF09\u306E\u3053\u3068\u3067\u3042\u308B\uFF0E\u30A8\u30EA\u30FB\u30AB\u30EB\u30BF\u30F3\u306B\u3088\u3063\u3066\u5F7C\u306E\u535A\u58EB\u8AD6\u6587\u306B\u304A\u3044\u3066\u5C0E\u5165\u3055\u308C\u305F\uFF0E"@ja . . . . . "V.L."@en . "1336000"^^ . . "Cartan subalgebra"@en . . . . . . . . . . . . . . . . . "Vladimir L. Popov"@en . . "In der Mathematik, speziell in der Theorie der Lie-Algebren, werden Cartan-Unteralgebren unter anderem in der Klassifikation der halbeinfachen Lie-Algebren und in der Theorie der symmetrischen R\u00E4ume verwendet. Der Rang einer Lie-Algebra (oder der zugeh\u00F6rigen Lie-Gruppe) ist definiert als die Dimension der Cartan-Unteralgebra. Ein Beispiel einer Cartan-Unteralgebra ist die Algebra der Diagonalmatrizen."@de . . . . "\u041F\u043E\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0430 \u041A\u0430\u0440\u0442\u0430\u043D\u0430 \u2014 \u043F\u043E\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0430 \u041B\u0438 , \u0440\u0430\u0432\u043D\u0430\u044F \u0441\u0432\u043E\u0435\u043C\u0443 \u043D\u043E\u0440\u043C\u0430\u043B\u0438\u0437\u0430\u0442\u043E\u0440\u0443: \n* \u0434\u043B\u044F \u043D\u0435\u043A\u043E\u0442\u043E\u0440\u043E\u0433\u043E (\u043D\u0438\u043B\u044C\u043F\u043E\u0442\u0435\u043D\u0442\u043D\u043E\u0441\u0442\u044C), \n* (\u0441\u0430\u043C\u043E\u043D\u043E\u0440\u043C\u0430\u043B\u0438\u0437\u043E\u0432\u0430\u043D\u043D\u043E\u0441\u0442\u044C). \u041F\u043E\u043D\u044F\u0442\u0438\u0435 \u0438\u043C\u0435\u0435\u0442 \u0431\u043E\u043B\u044C\u0448\u043E\u0435 \u0437\u043D\u0430\u0447\u0435\u043D\u0438\u0435 \u0434\u043B\u044F \u043A\u043B\u0430\u0441\u0441\u0438\u0444\u0438\u043A\u0430\u0446\u0438\u0438 \u043F\u043E\u043B\u0443\u043F\u0440\u043E\u0441\u0442\u044B\u0445 \u0430\u043B\u0433\u0435\u0431\u0440 \u041B\u0438 \u0438 \u0432 \u0442\u0435\u043E\u0440\u0438\u0438 \u0441\u0438\u043C\u043C\u0435\u0442\u0440\u0438\u0447\u043D\u044B\u0445 \u043F\u0440\u043E\u0441\u0442\u0440\u0430\u043D\u0441\u0442\u0432. \u041D\u0430\u0437\u0432\u0430\u043D\u0430 \u0432 \u0447\u0435\u0441\u0442\u044C \u0444\u0440\u0430\u043D\u0446\u0443\u0437\u0441\u043A\u043E\u0433\u043E \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u0430 \u042D\u043B\u0438 \u041A\u0430\u0440\u0442\u0430\u043D\u0430. \u042D\u043A\u0432\u0438\u0432\u0430\u043B\u0435\u043D\u0442\u043D\u043E\u0435 \u043E\u043F\u0440\u0435\u0434\u0435\u043B\u0435\u043D\u0438\u0435: \u043D\u0438\u043B\u044C\u043F\u043E\u0442\u0435\u043D\u0442\u043D\u0430\u044F \u043F\u043E\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u0430 \u044F\u0432\u043B\u044F\u0435\u0442\u0441\u044F \u043F\u043E\u0434\u0430\u043B\u0433\u0435\u0431\u0440\u043E\u0439 \u041A\u0430\u0440\u0442\u0430\u043D\u0430, \u0435\u0441\u043B\u0438 \u043E\u043D\u0430 \u0440\u0430\u0432\u043D\u0430 \u0441\u0432\u043E\u0435\u0439 \u043D\u0443\u043B\u044C-\u043A\u043E\u043C\u043F\u043E\u043D\u0435\u043D\u0442\u0435 \u0424\u0438\u0442\u0442\u0438\u043D\u0433\u0430, \u0442\u043E \u0435\u0441\u0442\u044C \u043C\u043D\u043E\u0436\u0435\u0441\u0442\u0432\u0443: \u0433\u0434\u0435 \u2014 \u043F\u0440\u0438\u0441\u043E\u0435\u0434\u0438\u043D\u0451\u043D\u043D\u043E\u0435 \u043F\u0440\u0435\u0434\u0441\u0442\u0430\u0432\u043B\u0435\u043D\u0438\u0435 \u0433\u0440\u0443\u043F\u043F\u044B \u041B\u0438."@ru . "\u5728\u6570\u5B66\u4E2D\uFF0C\u5609\u5F53\u5B50\u4EE3\u6570\uFF08Cartan subalgebra\uFF0C\u7F29\u5199\u4E3A CSA\uFF09\uFF0C\u662F\u4E00\u4E2A\u674E\u4EE3\u6570 \u7684\u81EA\u6B63\u89C4\u5316\uFF08\u5982\u679C \u5BF9\u6240\u6709 \uFF0C\u90A3\u4E48\uFF09\u3001\u5E42\u96F6\u5B50\u4EE3\u6570\uFF0C\u901A\u5E38\u7528 \u8868\u793A\u3002"@zh . . . . . . . . . "1117754196"^^ . . . . "\uCE74\uB974\uD0D5 \uBD80\uBD84 \uB300\uC218"@ko . . . . "In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising (if for all , then ). They were introduced by \u00C9lie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic . In a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic zero (e.g., ), a Cartan subalgebra is the same thing as a maximal abelian subalgebra consisting of elements x such that the adjoint endomorphism is semisimple (i.e., diagonalizable). Sometimes this characterization is simply taken as the definition of a Cartan subalgebra.pg 231 In general, a subalgebra is called toral if it consists of semisimple elements. Over an algebraically closed field, a toral subalgebra is automatically abelian. Thus, over an algebraically closed field of characteristic zero, a Cartan subalgebra can also be defined as a maximal toral subalgebra. Kac\u2013Moody algebras and generalized Kac\u2013Moody algebras also have subalgebras that play the same role as the Cartan subalgebras of semisimple Lie algebras (over a field of characteristic zero)."@en . . .