. . . . . "Em matem\u00E1tica, na \u00E1rea de teoria aditiva dos n\u00FAmeros, o Teorema de Erd\u0151s\u2013Fuchs \u00E9 um teorema sobre o n\u00FAmero de formas que um n\u00FAmero pode ser representado como a soma de dois elementos de um determinado conjunto, afirmando que a ordem m\u00E9dia desse n\u00FAmero n\u00E3o pode ser muito pr\u00F3ximo de uma fun\u00E7\u00E3o linear. O nome deste teorema vem de Paul Erd\u0151s e Wolfgang Heinrich Johannes Fuchs, que publicaram sua prova em 1956."@pt . . . . . "1087229425"^^ . . . . . "In mathematics, in the area of additive number theory, the Erd\u0151s\u2013Fuchs theorem is a statement about the number of ways that numbers can be represented as a sum of elements of a given additive basis, stating that the average order of this number cannot be too close to being a linear function. The theorem is named after Paul Erd\u0151s and Wolfgang Heinrich Johannes Fuchs, who published it in 1956."@en . . . . "Th\u00E9or\u00E8me d'Erd\u0151s-Fuchs"@fr . . "10112"^^ . . . . . . "In mathematics, in the area of additive number theory, the Erd\u0151s\u2013Fuchs theorem is a statement about the number of ways that numbers can be represented as a sum of elements of a given additive basis, stating that the average order of this number cannot be too close to being a linear function. The theorem is named after Paul Erd\u0151s and Wolfgang Heinrich Johannes Fuchs, who published it in 1956."@en . . . "Le th\u00E9or\u00E8me d'Erd\u0151s-Fuchs, en th\u00E9orie combinatoire des nombres, a pour objet le nombre de fa\u00E7ons de repr\u00E9senter un entier naturel n comme somme de deux \u00E9l\u00E9ments d'un ensemble donn\u00E9. Il \u00E9tablit que la moyenne de Ces\u00E0ro de cette fonction de n ne peut pas tendre \u00AB tr\u00E8s vite \u00BB vers une constante non nulle."@fr . . "Teorema de Erd\u0151s\u2013Fuchs"@pt . . . . . . . . . . . . "Erd\u0151s\u2013Fuchs theorem"@en . . "Em matem\u00E1tica, na \u00E1rea de teoria aditiva dos n\u00FAmeros, o Teorema de Erd\u0151s\u2013Fuchs \u00E9 um teorema sobre o n\u00FAmero de formas que um n\u00FAmero pode ser representado como a soma de dois elementos de um determinado conjunto, afirmando que a ordem m\u00E9dia desse n\u00FAmero n\u00E3o pode ser muito pr\u00F3ximo de uma fun\u00E7\u00E3o linear. O nome deste teorema vem de Paul Erd\u0151s e Wolfgang Heinrich Johannes Fuchs, que publicaram sua prova em 1956."@pt . . . "18543655"^^ . . . . . . . . . . "Le th\u00E9or\u00E8me d'Erd\u0151s-Fuchs, en th\u00E9orie combinatoire des nombres, a pour objet le nombre de fa\u00E7ons de repr\u00E9senter un entier naturel n comme somme de deux \u00E9l\u00E9ments d'un ensemble donn\u00E9. Il \u00E9tablit que la moyenne de Ces\u00E0ro de cette fonction de n ne peut pas tendre \u00AB tr\u00E8s vite \u00BB vers une constante non nulle."@fr .