"The FitzHugh\u2013Nagumo model (FHN), named after (1922\u20132007) who suggested the system in 1961 and J. Nagumo et al. who created the equivalent circuit the following year, describes a prototype of an excitable system (e.g., a neuron). The FHN Model is an example of a relaxation oscillator because, if the external stimulus exceeds a certain threshold value, the system will exhibit a characteristic excursion in phase space, before the variables and relax back to their rest values. The equations for this dynamical system read"@en . . . "9105867"^^ . . . . . . . . . . "\u30D5\u30A3\u30C3\u30C4\u30D5\u30E5\u30FC-\u5357\u96F2\u30E2\u30C7\u30EB"@ja . . . . . . . "\u041C\u043E\u0434\u0435\u0301\u043B\u044C \u0424\u0438\u0442\u0446\u0425\u044C\u044E\u0301 \u2014 \u041D\u0430\u0433\u0443\u0301\u043C\u043E \u2014 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u0447\u0435\u0441\u043A\u0430\u044F \u043C\u043E\u0434\u0435\u043B\u044C, \u043D\u0430\u0437\u0432\u0430\u043D\u0430\u044F \u0432 \u0447\u0435\u0441\u0442\u044C \u0420\u0438\u0447\u0430\u0440\u0434\u0430 \u0424\u0438\u0442\u0446\u0425\u044C\u044E (1922\u20142007), \u0432 1961 \u0433\u043E\u0434\u0443 \u043E\u043F\u0443\u0431\u043B\u0438\u043A\u043E\u0432\u0430\u0432\u0448\u0435\u0433\u043E \u0441\u043E\u043E\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0443\u044E\u0449\u0443\u044E \u0441\u0438\u0441\u0442\u0435\u043C\u0443 \u0434\u0438\u0444\u0444\u0435\u0440\u0435\u043D\u0446\u0438\u0430\u043B\u044C\u043D\u044B\u0445 \u0443\u0440\u0430\u0432\u043D\u0435\u043D\u0438\u0439 \u043F\u043E\u0434 \u043D\u0430\u0437\u0432\u0430\u043D\u0438\u0435\u043C \u043C\u043E\u0434\u0435\u043B\u044C \u0411\u043E\u043D\u0445\u0451\u0444\u0444\u0435\u0440\u0430 \u2014 \u0432\u0430\u043D \u0434\u0435\u0440 \u041F\u043E\u043B\u044F, \u0438 \u0414. \u041D\u0430\u0433\u0443\u043C\u043E (1926\u20141999), \u0432 \u0441\u043B\u0435\u0434\u0443\u044E\u0449\u0435\u043C \u0433\u043E\u0434\u0443 \u043F\u0440\u0435\u0434\u043B\u043E\u0436\u0438\u0432\u0448\u0435\u0433\u043E \u0430\u043D\u0430\u043B\u043E\u0433\u0438\u0447\u043D\u0443\u044E \u0441\u0438\u0441\u0442\u0435\u043C\u0443 \u0443\u0440\u0430\u0432\u043D\u0435\u043D\u0438\u0439."@ru . . "\u83F2\u8328\u4F11-\u5357\u4E91\u65B9\u7A0B\uFF08Fitzhugh-Nagumo equation\uFF09\u662F\u4E00\u4E2A\u975E\u7EBF\u6027\u504F\u5FAE\u5206\u65B9\u7A0B\uFF0C\u6700\u65E9\u7531\uFF08Richard FitzHugh\uFF09\u4E8E1961\u5E74\u63D0\u51FA\uFF0C\u63CF\u8FF0\u4E86\u5728\u9AD8\u4E8E\u9608\u503C\u7684\u5E38\u7535\u6D41\u523A\u6FC0\u4E0B\u795E\u7ECF\u5143\u52A8\u4F5C\u7535\u4F4D\u7684\u5468\u671F\u6027\u632F\u8361\u3002\u5F53\u65F6\u83F2\u8328\u4F11\u5C06\u5176\u79F0\u4E3A\u201C\u670B\u970D\u8D39\u5C14-\u8303\u5FB7\u6CE2\u5C14\u6A21\u578B\uFF08Bonhoeffer-van der Pol model\uFF09\u201D\u3002\u6B21\u5E74\uFF0C\u5357\u4E91\u4EC1\u4E00\u7B49\u4EBA\u4E5F\u63D0\u51FA\u4E86\u4E00\u4E2A\u4E0E\u8BE5\u65B9\u7A0B\u7B49\u6548\u7684\u7535\u8DEF\u3002\u8BE5\u65B9\u7A0B\u4E3A\u7684\u4E8C\u7EF4\u60C5\u5F62\uFF1B\u540E\u8005\u56E0\u63ED\u793A\u4E86\u67AA\u4E4C\u8D3C\u5DE8\u5927\u8F74\u7A81\u4E2D\u52A8\u4F5C\u7535\u4F4D\u7684\u4EA7\u751F\u548C\u4F20\u5BFC\u673A\u5236\u800C\u5206\u4EAB\u4E861963\u5E74\u7684\u8BFA\u8D1D\u5C14\u751F\u7406\u5B66\u6216\u533B\u5B66\u5956\u3002"@zh . . . "Das FitzHugh-Nagumo-Modell (nach (* 1922) und J. Nagumo, die das Modell unabh\u00E4ngig voneinander entwickelten) beschreibt einen Prototyp eines anregbaren Systems, zum Beispiel eines Neurons oder Axons.Wenn die \u00E4u\u00DFere Anregung einen Schwellenwert \u00FCberschreitet, f\u00FChrt das System eine charakteristische Exkursion im -Phasenraum aus,bevor die Variablen und zu ihren Ruhewerten zur\u00FCckkehren.Dieses Verhalten ist modellhaft f\u00FCr die Generation von Spikes (=kurzzeitige Erh\u00F6hung der Membranspannung ) in einem Neuron nach Stimulation durch einen externen Strom . Notation: \n* bezeichnet das Membranpotential \n* ist eine Erholungs-Variable, die einen zur Erholung nach der elektrischen Anregung notwendigen negativen Feedback mit linearer Dynamik beschreibt. \n* ist der externen Strom. \n* sind Konstanten. Die Gleichungen dieses dynamischen Systems lauten Die Anregungs-Dynamik kann mithilfe der Nullklinen anschaulich dargestellt werden. Der station\u00E4re Punkt (Ruhewerte) ist der Schnittpunkt der - und der -Nullklinen. Wird das System f\u00FCr kurze Zeit angeregt, beschreibt es eine Exkursion im Phasenraum, die sich in vier Stadien einteilen l\u00E4sst: zun\u00E4chst beschreibt die Trajektorie eine fast horizontale Trajektorie, da wegen gilt . Sobald die Trajektorie die kubische -Nullkline erreicht, sinkt rapide und die Trajektorie folgt der -Nullklinen. Am oberen Scheitelpunkt der -Nullklinen, erfolgt eine weitere horizontale Passage zum linken Ast der -Nullkline, und anschlie\u00DFend eine erneute Phase, in der die Trajektorie dieser Nullklinen folgt. Das FitzHugh-Nagumo-Modell, welches detailliert die Aktivierungs- und Deaktivierungsdynamik in einem spikenden Neuron abbildet, ist eine vereinfachte Version des Hodgkin-Huxley-Modell. In den Original-Artikeln von FitzHugh wird dies Modell auch als Bonhoeffer-van-der-Pol-Oszillator bezeichnet, da es den Van-der-Pol-Oszillator als Spezialfall f\u00FCr enth\u00E4lt."@de . . . . "\u041C\u043E\u0434\u0435\u043B\u044C \u0424\u0438\u0442\u0446\u0425\u044C\u044E \u2014 \u041D\u0430\u0433\u0443\u043C\u043E"@ru . . . "Il modello di FitzHugh-Nagumo \u00E8 un modello matematico che descrive il processo di depolarizzazione della membrana cellulare, esso \u00E8 una semplificazione del modello di Hodgkin-Huxley. Si tratta di un sistema differenziale di due equazioni: con , dove \u00E8 il potenziale della cellula, \u00E8 una grandezza che riassume tutti i parametri del sistema e \u00E8 un impulso elettrico esterno."@it . . . . . "Il modello di FitzHugh-Nagumo \u00E8 un modello matematico che descrive il processo di depolarizzazione della membrana cellulare, esso \u00E8 una semplificazione del modello di Hodgkin-Huxley. Si tratta di un sistema differenziale di due equazioni: con , dove \u00E8 il potenziale della cellula, \u00E8 una grandezza che riassume tutti i parametri del sistema e \u00E8 un impulso elettrico esterno."@it . "Modelo de FitzHugh-Nagumo"@es . . "\u83F2\u8328\u4F11-\u5357\u4E91\u65B9\u7A0B"@zh . . . "El modelo de FitzHugh-Nagumo (FHN) describe un prototipo de un sistema excitable (por ejemplo, una neurona). Toma su nombre de (1922 - 2007), quien propuso el modelo te\u00F3rico en 1961, as\u00ED como de y otros, que construyeron un circuito electr\u00F3nico equivalente. El modelo FHN es un ejemplo de ya que si el est\u00EDmulo externo sobrepasa cierto valor umbral, el sistema exhibir\u00E1 una excursi\u00F3n caracter\u00EDstica en el espacio de fases, tras la cual las variables y volver\u00E1n a su valor en reposo. Este comportamiento se observa en neuronas cuando son estimuladas por una corriente externa. Matem\u00E1ticamente, el sistema se expresa as\u00ED: El modelo FitzHugh\u2013Nagumo es una versi\u00F3n simplificada del modelo de Hodgkin y Huxley, que describe la din\u00E1mica de la neurona m\u00E1s en detalle. En los art\u00EDculos originales de FitzHugh, su modelo recib\u00EDa el nombre de oscilador de van der Pol (V\u00E9anse Karl Friedrich Bonhoeffer y Balthasar van der Pol). Esto es as\u00ED porque el modelo de FitzHugh\u2013Nagumo, para el caso , se reduce al oscilador de van der Pol. El circuito equivalente fue propuesto por Jin-ichi Nagumo, Suguru Arimoto, y Shuji Yoshizawa.[1]"@es . . . . . "\u83F2\u8328\u4F11-\u5357\u4E91\u65B9\u7A0B\uFF08Fitzhugh-Nagumo equation\uFF09\u662F\u4E00\u4E2A\u975E\u7EBF\u6027\u504F\u5FAE\u5206\u65B9\u7A0B\uFF0C\u6700\u65E9\u7531\uFF08Richard FitzHugh\uFF09\u4E8E1961\u5E74\u63D0\u51FA\uFF0C\u63CF\u8FF0\u4E86\u5728\u9AD8\u4E8E\u9608\u503C\u7684\u5E38\u7535\u6D41\u523A\u6FC0\u4E0B\u795E\u7ECF\u5143\u52A8\u4F5C\u7535\u4F4D\u7684\u5468\u671F\u6027\u632F\u8361\u3002\u5F53\u65F6\u83F2\u8328\u4F11\u5C06\u5176\u79F0\u4E3A\u201C\u670B\u970D\u8D39\u5C14-\u8303\u5FB7\u6CE2\u5C14\u6A21\u578B\uFF08Bonhoeffer-van der Pol model\uFF09\u201D\u3002\u6B21\u5E74\uFF0C\u5357\u4E91\u4EC1\u4E00\u7B49\u4EBA\u4E5F\u63D0\u51FA\u4E86\u4E00\u4E2A\u4E0E\u8BE5\u65B9\u7A0B\u7B49\u6548\u7684\u7535\u8DEF\u3002\u8BE5\u65B9\u7A0B\u4E3A\u7684\u4E8C\u7EF4\u60C5\u5F62\uFF1B\u540E\u8005\u56E0\u63ED\u793A\u4E86\u67AA\u4E4C\u8D3C\u5DE8\u5927\u8F74\u7A81\u4E2D\u52A8\u4F5C\u7535\u4F4D\u7684\u4EA7\u751F\u548C\u4F20\u5BFC\u673A\u5236\u800C\u5206\u4EAB\u4E861963\u5E74\u7684\u8BFA\u8D1D\u5C14\u751F\u7406\u5B66\u6216\u533B\u5B66\u5956\u3002"@zh . . . "Modelo FitzHugh\u2013Nagumo"@pt . . . "El modelo de FitzHugh-Nagumo (FHN) describe un prototipo de un sistema excitable (por ejemplo, una neurona). Toma su nombre de (1922 - 2007), quien propuso el modelo te\u00F3rico en 1961, as\u00ED como de y otros, que construyeron un circuito electr\u00F3nico equivalente. El modelo FHN es un ejemplo de ya que si el est\u00EDmulo externo sobrepasa cierto valor umbral, el sistema exhibir\u00E1 una excursi\u00F3n caracter\u00EDstica en el espacio de fases, tras la cual las variables y volver\u00E1n a su valor en reposo. Este comportamiento se observa en neuronas cuando son estimuladas por una corriente externa."@es . . "\u041C\u043E\u0434\u0435\u0301\u043B\u044C \u0424\u0438\u0442\u0446\u0425\u044C\u044E\u0301 \u2014 \u041D\u0430\u0433\u0443\u0301\u043C\u043E \u2014 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u0447\u0435\u0441\u043A\u0430\u044F \u043C\u043E\u0434\u0435\u043B\u044C, \u043D\u0430\u0437\u0432\u0430\u043D\u0430\u044F \u0432 \u0447\u0435\u0441\u0442\u044C \u0420\u0438\u0447\u0430\u0440\u0434\u0430 \u0424\u0438\u0442\u0446\u0425\u044C\u044E (1922\u20142007), \u0432 1961 \u0433\u043E\u0434\u0443 \u043E\u043F\u0443\u0431\u043B\u0438\u043A\u043E\u0432\u0430\u0432\u0448\u0435\u0433\u043E \u0441\u043E\u043E\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0443\u044E\u0449\u0443\u044E \u0441\u0438\u0441\u0442\u0435\u043C\u0443 \u0434\u0438\u0444\u0444\u0435\u0440\u0435\u043D\u0446\u0438\u0430\u043B\u044C\u043D\u044B\u0445 \u0443\u0440\u0430\u0432\u043D\u0435\u043D\u0438\u0439 \u043F\u043E\u0434 \u043D\u0430\u0437\u0432\u0430\u043D\u0438\u0435\u043C \u043C\u043E\u0434\u0435\u043B\u044C \u0411\u043E\u043D\u0445\u0451\u0444\u0444\u0435\u0440\u0430 \u2014 \u0432\u0430\u043D \u0434\u0435\u0440 \u041F\u043E\u043B\u044F, \u0438 \u0414. \u041D\u0430\u0433\u0443\u043C\u043E (1926\u20141999), \u0432 \u0441\u043B\u0435\u0434\u0443\u044E\u0449\u0435\u043C \u0433\u043E\u0434\u0443 \u043F\u0440\u0435\u0434\u043B\u043E\u0436\u0438\u0432\u0448\u0435\u0433\u043E \u0430\u043D\u0430\u043B\u043E\u0433\u0438\u0447\u043D\u0443\u044E \u0441\u0438\u0441\u0442\u0435\u043C\u0443 \u0443\u0440\u0430\u0432\u043D\u0435\u043D\u0438\u0439."@ru . . "The FitzHugh\u2013Nagumo model (FHN), named after (1922\u20132007) who suggested the system in 1961 and J. Nagumo et al. who created the equivalent circuit the following year, describes a prototype of an excitable system (e.g., a neuron). The FHN Model is an example of a relaxation oscillator because, if the external stimulus exceeds a certain threshold value, the system will exhibit a characteristic excursion in phase space, before the variables and relax back to their rest values. This behaviour is typical for spike generations (a short, nonlinear elevation of membrane voltage , diminished over time by a slower, linear recovery variable ) in a neuron after stimulation by an external input current. The equations for this dynamical system read The dynamics of this system can be nicely described by zapping between the left and right branch of the cubic nullcline. The FitzHugh\u2013Nagumo model is a simplified 2D version of the Hodgkin\u2013Huxley model which models in a detailed manner activation and deactivation dynamics of a spiking neuron. In the original papers of FitzHugh, this model was called Bonhoeffer\u2013Van der Pol oscillator (named after Karl-Friedrich Bonhoeffer and Balthasar van der Pol) because it contains the Van der Pol oscillator as a special case for . The equivalent circuit was suggested by Jin-ichi Nagumo, Suguru Arimoto, and Shuji Yoshizawa."@en . . . . . . . "\u30D5\u30A3\u30C3\u30C4\u30D5\u30E5\u30FC-\u5357\u96F2\u30E2\u30C7\u30EB(FitzHugh-Nagumo model)\u306F\u3001\u795E\u7D4C\u7D30\u80DE\u306A\u3069\u306E\u96FB\u6C17\u7684\u8208\u596E\u6027\u7D30\u80DE\u306E\u6D3B\u52D5\u96FB\u4F4D\u3092\u8868\u73FE\u3057\u305F\u30E2\u30C7\u30EB\u3067\u3042\u308A\u3001\u3068\u306E\u540D\u306B\u3061\u306A\u3093\u3067\u3044\u308B\u3002\u3053\u306E\u30E2\u30C7\u30EB\u306F\u3001\u795E\u7D4C\u7D30\u80DE\u306E\u6D3B\u52D5\u96FB\u4F4D\u767A\u706B(\u30B9\u30D1\u30A4\u30AF)\u306B\u304A\u3051\u308B\u6D3B\u6027\u5316\u3068\u4E0D\u6D3B\u6027\u5316\u3092\u30E2\u30C7\u30EB\u5316\u3057\u305F\u306E\u5FAE\u5206\u65B9\u7A0B\u5F0F\u3092\u7C21\u7565\u5316\u3057\u305F\u3082\u306E\u3067\u3042\u308B\u3002\u30D5\u30A3\u30C3\u30C4\u30D5\u30E5\u30FC-\u5357\u96F2\u30E2\u30C7\u30EB\u306F\u4EE5\u4E0B\u306E\u3088\u3046\u306B\u50C5\u304B2\u3064\u306E\u5FAE\u5206\u65B9\u7A0B\u5F0F\u3067\u8868\u3055\u308C\u308B\u3002 \u3053\u3053\u3067\u3001\u306F\u819C\u96FB\u4F4D\u3001\u306F\u4E0D\u6D3B\u6027\u5316\u3092\u8868\u3059\u5909\u6570\u3001\u306F\u5916\u90E8\u523A\u6FC0\u96FB\u6D41\u3068\u898B\u306A\u3059\u3053\u3068\u304C\u3067\u304D\u308B\u3002 \u306E\u30D1\u30E9\u30E1\u30FC\u30BF\u3092\u3042\u308B\u5024\u306B\u9078\u629E\u3059\u308B\u3068\u3001\u5916\u90E8\u523A\u6FC0\u304C\u3042\u308B\u7A0B\u5EA6\u4EE5\u4E0A\u5F37\u3044\u5834\u5408\u3001\u7CFB\u306F \u4F4D\u76F8\u7A7A\u9593\u3067\u7279\u5FB4\u7684\u306A\u632F\u308B\u821E\u3044\u3092\u3059\u308B\u3002\u3053\u308C\u306F\u3001\u795E\u7D4C\u7D30\u80DE\u306E\u30B9\u30D1\u30A4\u30AF\u306B\u304A\u3051\u308B\u8131\u5206\u6975\u3068\u3001\u305D\u308C\u306B\u7D9A\u304F\u306B\u76F8\u5F53\u3059\u308B\u3002\u30B9\u30D1\u30A4\u30AF\u306E\u767A\u751F\u3059\u308B\u523A\u6FC0\u5F37\u5EA6\u306B\u660E\u77AD\u306A\u95BE\u5024\u306F\u5B58\u5728\u3057\u306A\u3044\u3082\u306E\u306E\u3001\u3053\u306E\u73FE\u8C61\u306F\u795E\u7D4C\u7D30\u80DE\u306E\u523A\u6FC0\u5FDC\u7B54\u306B\u5BFE\u3059\u308B\u5168\u304B\u7121\u304B\u306E\u6CD5\u5247\u306B\u985E\u4F3C\u3057\u3066\u3044\u308B\u3002 \u307E\u305F\u3001\u306E\u5024\u306B\u3088\u3063\u3066\u306F\u767A\u632F\u3001\u3059\u306A\u308F\u3061\u306E\u632F\u52D5\u3092\u5F15\u304D\u8D77\u3053\u3059\u3002\u3053\u308C\u3089\u306E\u69D8\u3005\u306A\u52D5\u7684\u6027\u8CEA\u306F\u3001v-w\u5E73\u9762\u4E0A\u306B\u304A\u3051\u308B\u5DE6\u53F3\u306E\u30CC\u30EB\u30AF\u30E9\u30A4\u30F3\u3092\u884C\u304D\u6765\u3059\u308B\u3053\u3068\u3067\u8AAC\u660E\u3067\u304D\u308B\u3002 \u30D5\u30A3\u30C3\u30C4\u30D5\u30E5\u30FC-\u5357\u96F2\u30E2\u30C7\u30EB\u306F\u3001\u30D5\u30A3\u30C3\u30C4\u30D5\u30E5\u30FC\u306E\u539F\u8457\u8AD6\u6587\u306B\u306F\u300C\u30DC\u30F3\u30DB\u30C3\u30D5\u30A1\u30FC\u30FB\u30D5\u30A1\u30F3\u30FB\u30C7\u30EB\u30FB\u30DD\u30FC\u30EB\u632F\u52D5\u5B50\u300D\u3068\u8A18\u8FF0\u3055\u308C\u3066\u3044\u308B\u304C\u3001\u305D\u308C\u306F\u30D5\u30A1\u30F3\u30FB\u30C7\u30EB\u30FB\u30DD\u30FC\u30EB\u632F\u52D5\u5B50\u304C\u3001\u4E0A\u8A18\u30E2\u30C7\u30EB\u306B\u304A\u3044\u3066\u3068\u3057\u305F\u7279\u5225\u306A\u5834\u5408\u306B\u76F8\u5F53\u3059\u308B\u305F\u3081\u3067\u3042\u308B\u3002 \u4E8C\u6B21\u5143\u306E\u30DB\u30B8\u30AD\u30F3-\u30CF\u30AF\u30B9\u30EA\u30FC\u30E2\u30C7\u30EB\u3068\u547C\u3070\u308C\u3001\u30DB\u30B8\u30AD\u30F3-\u30CF\u30AF\u30B9\u30EA\u30FC\u30E2\u30C7\u30EB\u306F\u56DB\u6B21\u306E\u5F0F\u3067\u3042\u308B\u3002"@ja . . "O Modelo FitzHugh\u2013Nagumo \u00E9 um dos principais modelos de disparos neuronais, ou seja, um dos principais modelos matem\u00E1ticos que descrevem os padr\u00F5es com os quais potenciais de a\u00E7\u00E3o s\u00E3o iniciados e propagados nos neur\u00F4nios. O modelo em quest\u00E3o faz refer\u00EAncia a (1922 \u2013 2007), que sugeriu a cria\u00E7\u00E3o do sistema em 1961 e a J. Nagumo et al., que criou o circuito equivalente no ano seguinte, descrevendo o prot\u00F3tipo de um sistema excit\u00E1vel (por exemplo, o de um neur\u00F4nio)."@pt . . "FitzHugh\u2013Nagumo model"@en . . . . . . . . . "O Modelo FitzHugh\u2013Nagumo \u00E9 um dos principais modelos de disparos neuronais, ou seja, um dos principais modelos matem\u00E1ticos que descrevem os padr\u00F5es com os quais potenciais de a\u00E7\u00E3o s\u00E3o iniciados e propagados nos neur\u00F4nios. O modelo em quest\u00E3o faz refer\u00EAncia a (1922 \u2013 2007), que sugeriu a cria\u00E7\u00E3o do sistema em 1961 e a J. Nagumo et al., que criou o circuito equivalente no ano seguinte, descrevendo o prot\u00F3tipo de um sistema excit\u00E1vel (por exemplo, o de um neur\u00F4nio)."@pt . . "1037464531"^^ . "4423"^^ . "\u30D5\u30A3\u30C3\u30C4\u30D5\u30E5\u30FC-\u5357\u96F2\u30E2\u30C7\u30EB(FitzHugh-Nagumo model)\u306F\u3001\u795E\u7D4C\u7D30\u80DE\u306A\u3069\u306E\u96FB\u6C17\u7684\u8208\u596E\u6027\u7D30\u80DE\u306E\u6D3B\u52D5\u96FB\u4F4D\u3092\u8868\u73FE\u3057\u305F\u30E2\u30C7\u30EB\u3067\u3042\u308A\u3001\u3068\u306E\u540D\u306B\u3061\u306A\u3093\u3067\u3044\u308B\u3002\u3053\u306E\u30E2\u30C7\u30EB\u306F\u3001\u795E\u7D4C\u7D30\u80DE\u306E\u6D3B\u52D5\u96FB\u4F4D\u767A\u706B(\u30B9\u30D1\u30A4\u30AF)\u306B\u304A\u3051\u308B\u6D3B\u6027\u5316\u3068\u4E0D\u6D3B\u6027\u5316\u3092\u30E2\u30C7\u30EB\u5316\u3057\u305F\u306E\u5FAE\u5206\u65B9\u7A0B\u5F0F\u3092\u7C21\u7565\u5316\u3057\u305F\u3082\u306E\u3067\u3042\u308B\u3002\u30D5\u30A3\u30C3\u30C4\u30D5\u30E5\u30FC-\u5357\u96F2\u30E2\u30C7\u30EB\u306F\u4EE5\u4E0B\u306E\u3088\u3046\u306B\u50C5\u304B2\u3064\u306E\u5FAE\u5206\u65B9\u7A0B\u5F0F\u3067\u8868\u3055\u308C\u308B\u3002 \u3053\u3053\u3067\u3001\u306F\u819C\u96FB\u4F4D\u3001\u306F\u4E0D\u6D3B\u6027\u5316\u3092\u8868\u3059\u5909\u6570\u3001\u306F\u5916\u90E8\u523A\u6FC0\u96FB\u6D41\u3068\u898B\u306A\u3059\u3053\u3068\u304C\u3067\u304D\u308B\u3002 \u306E\u30D1\u30E9\u30E1\u30FC\u30BF\u3092\u3042\u308B\u5024\u306B\u9078\u629E\u3059\u308B\u3068\u3001\u5916\u90E8\u523A\u6FC0\u304C\u3042\u308B\u7A0B\u5EA6\u4EE5\u4E0A\u5F37\u3044\u5834\u5408\u3001\u7CFB\u306F \u4F4D\u76F8\u7A7A\u9593\u3067\u7279\u5FB4\u7684\u306A\u632F\u308B\u821E\u3044\u3092\u3059\u308B\u3002\u3053\u308C\u306F\u3001\u795E\u7D4C\u7D30\u80DE\u306E\u30B9\u30D1\u30A4\u30AF\u306B\u304A\u3051\u308B\u8131\u5206\u6975\u3068\u3001\u305D\u308C\u306B\u7D9A\u304F\u306B\u76F8\u5F53\u3059\u308B\u3002\u30B9\u30D1\u30A4\u30AF\u306E\u767A\u751F\u3059\u308B\u523A\u6FC0\u5F37\u5EA6\u306B\u660E\u77AD\u306A\u95BE\u5024\u306F\u5B58\u5728\u3057\u306A\u3044\u3082\u306E\u306E\u3001\u3053\u306E\u73FE\u8C61\u306F\u795E\u7D4C\u7D30\u80DE\u306E\u523A\u6FC0\u5FDC\u7B54\u306B\u5BFE\u3059\u308B\u5168\u304B\u7121\u304B\u306E\u6CD5\u5247\u306B\u985E\u4F3C\u3057\u3066\u3044\u308B\u3002 \u307E\u305F\u3001\u306E\u5024\u306B\u3088\u3063\u3066\u306F\u767A\u632F\u3001\u3059\u306A\u308F\u3061\u306E\u632F\u52D5\u3092\u5F15\u304D\u8D77\u3053\u3059\u3002\u3053\u308C\u3089\u306E\u69D8\u3005\u306A\u52D5\u7684\u6027\u8CEA\u306F\u3001v-w\u5E73\u9762\u4E0A\u306B\u304A\u3051\u308B\u5DE6\u53F3\u306E\u30CC\u30EB\u30AF\u30E9\u30A4\u30F3\u3092\u884C\u304D\u6765\u3059\u308B\u3053\u3068\u3067\u8AAC\u660E\u3067\u304D\u308B\u3002 \u30D5\u30A3\u30C3\u30C4\u30D5\u30E5\u30FC-\u5357\u96F2\u30E2\u30C7\u30EB\u306F\u3001\u30D5\u30A3\u30C3\u30C4\u30D5\u30E5\u30FC\u306E\u539F\u8457\u8AD6\u6587\u306B\u306F\u300C\u30DC\u30F3\u30DB\u30C3\u30D5\u30A1\u30FC\u30FB\u30D5\u30A1\u30F3\u30FB\u30C7\u30EB\u30FB\u30DD\u30FC\u30EB\u632F\u52D5\u5B50\u300D\u3068\u8A18\u8FF0\u3055\u308C\u3066\u3044\u308B\u304C\u3001\u305D\u308C\u306F\u30D5\u30A1\u30F3\u30FB\u30C7\u30EB\u30FB\u30DD\u30FC\u30EB\u632F\u52D5\u5B50\u304C\u3001\u4E0A\u8A18\u30E2\u30C7\u30EB\u306B\u304A\u3044\u3066\u3068\u3057\u305F\u7279\u5225\u306A\u5834\u5408\u306B\u76F8\u5F53\u3059\u308B\u305F\u3081\u3067\u3042\u308B\u3002 \u4E8C\u6B21\u5143\u306E\u30DB\u30B8\u30AD\u30F3-\u30CF\u30AF\u30B9\u30EA\u30FC\u30E2\u30C7\u30EB\u3068\u547C\u3070\u308C\u3001\u30DB\u30B8\u30AD\u30F3-\u30CF\u30AF\u30B9\u30EA\u30FC\u30E2\u30C7\u30EB\u306F\u56DB\u6B21\u306E\u5F0F\u3067\u3042\u308B\u3002"@ja . "Modello di FitzHugh-Nagumo"@it . . . . . "FitzHugh-Nagumo-Modell"@de . "Das FitzHugh-Nagumo-Modell (nach (* 1922) und J. Nagumo, die das Modell unabh\u00E4ngig voneinander entwickelten) beschreibt einen Prototyp eines anregbaren Systems, zum Beispiel eines Neurons oder Axons.Wenn die \u00E4u\u00DFere Anregung einen Schwellenwert \u00FCberschreitet, f\u00FChrt das System eine charakteristische Exkursion im -Phasenraum aus,bevor die Variablen und zu ihren Ruhewerten zur\u00FCckkehren.Dieses Verhalten ist modellhaft f\u00FCr die Generation von Spikes (=kurzzeitige Erh\u00F6hung der Membranspannung ) in einem Neuron nach Stimulation durch einen externen Strom . Notation:"@de .