"Fluorescence correlation spectroscopy"@en . "La Spectroscopie de Corr\u00E9lation de Fluorescence (SCF ou FCS pour l'anglais Fluorescence Correlation Spectroscopy) repose sur l'analyse des corr\u00E9lations des fluctuations de l'intensit\u00E9 de la fluorescence. L'analyse fournit les param\u00E8tres physiques gouvernant ces fluctuations. L'une des applications int\u00E9ressantes est l'analyse des fluctuations de la concentration de particules fluorescentes (souvent des mol\u00E9cules marqu\u00E9es) en solution. Dans cette application, on enregistre la fluorescence \u00E9mise par un tr\u00E8s faible volume ne contenant qu'un petit nombre de particules. L'intensit\u00E9 de la fluorescence fluctue alors \u00E0 cause du mouvement Brownien des particules, le nombre moyen de particules dans le sous-syst\u00E8me d\u00E9fini par le syst\u00E8me optique varie al\u00E9atoirement autour de sa valeur moyenne. L'analyse permet d'obtenir le nombre moyen de particules mais aussi le temps de diffusion moyen. On peut ainsi d\u00E9terminer la concentration et la taille des particules, des param\u00E8tres importants pour la recherche en biochimie, biophysique ou chimie. La SCF est un outil d'analyse tr\u00E8s sensible car il permet d'observer un faible nombre de mol\u00E9cules (concentration allant du nanomolaire au picomolaire) dans un petit volume (~1 \u03BCm3). Contrairement \u00E0 d'autres m\u00E9thodes (la Chromatographie en phase liquide \u00E0 haute performance par exemple), la SCF n'introduit pas de processus de s\u00E9paration physique, au contraire elle atteint sa r\u00E9solution spatiale gr\u00E2ce \u00E0 son dispositif optique. De plus, la SCF permet l'observation de mol\u00E9cules marqu\u00E9es par des fluorophores dans les voies m\u00E9taboliques de cellules vivantes. Ceci a ouvert la voie \u00E0 un nouveau champ de la biochimie in situ ou in vivo qui d\u00E9termine les voies m\u00E9taboliques des cellules et des organes intacts. G\u00E9n\u00E9ralement, la SCF est employ\u00E9e autour d'un microscope optique, en particulier un microscope confocal. Pour ces techniques, la lumi\u00E8re est concentr\u00E9e sur un \u00E9chantillon et les fluctuations d'intensit\u00E9 de fluorescence mesur\u00E9es (dues \u00E0 la diffusion, \u00E0 des r\u00E9actions chimiques ou physiques, \u00E0 l\u2019agr\u00E9gation, etc.) sont analys\u00E9es en utilisant l'autocorr\u00E9lation temporelle. Comme la propri\u00E9t\u00E9 mesur\u00E9e d\u00E9pend essentiellement de la magnitude ou du niveau des fluctuations, il existe un r\u00E9gime de mesure optimal lorsque les \u00E9l\u00E9ments individuels entrent ou sortent du volume d'observation (o\u00F9 s'allument et s'\u00E9teignent dans le volume), lorsque trop d'\u00E9l\u00E9ments sont mesur\u00E9s simultan\u00E9ment, les fluctuations sont faibles par rapport au signal et peuvent ne pas \u00EAtre r\u00E9solues -- \u00E0 l'inverse, si les fluctuations individuelles sont trop rares, une seule mesure peut prendre un temps prohibitif. La SCF est en un sens, la contrepartie en fluorescence de la diffusion dynamique de la lumi\u00E8re qui utilise une diffusion coh\u00E9rente au lieu de la fluorescence (incoh\u00E9rente). En conjonction avec un mod\u00E8le appropri\u00E9, la SCF permet d'obtenir des informations quantitatives telles que : \n* les coefficients de diffusion \n* les rayons hydrodynamiques \n* les concentrations moyennes \n* les taux de r\u00E9actions chimiques \n* les dynamiques triplet-singulet Comme les marqueurs fluorescents sont disponibles en de nombreuses couleurs et peuvent \u00EAtre attach\u00E9s sp\u00E9cifiquement \u00E0 une mol\u00E9cule particuli\u00E8re (par exemple, une prot\u00E9ine, un polym\u00E8re, un complexe-m\u00E9tallique, etc.), il est possible d'\u00E9tudier le comportement de mol\u00E9cules individuelles (en s\u00E9quence rapide dans des solutions compos\u00E9es). Avec le d\u00E9veloppement de d\u00E9tecteurs sensibles tels que les la d\u00E9tection du signal de fluorescence provenant de mol\u00E9cules individuelles dans des \u00E9chantillons fortement dilu\u00E9s et maintenant possible. \u00C0 l'aide de cette nouvelle possibilit\u00E9, on peut mener des exp\u00E9riences de SCF dans une grande gamme de sp\u00E9cimens allant des sciences des mat\u00E9riaux \u00E0 la biologie. Les progr\u00E8s en ing\u00E9nierie cellulaire permettant de marquer g\u00E9n\u00E9tiquement des prot\u00E9ines (la prot\u00E9ine fluorescente verte notamment) ont fait de la SCF un outil classique pour \u00E9tudier la dynamique des mol\u00E9cules au sein de cellule vivante."@fr . . . . . . . . "\u0424\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0442\u043D\u0430 \u043A\u043E\u0440\u0435\u043B\u044F\u0446\u0456\u0439\u043D\u0430 \u0441\u043F\u0435\u043A\u0442\u0440\u043E\u0441\u043A\u043E\u043F\u0456\u044F"@uk . . . . . . . . . . . "Espectroscopia de correla\u00E7\u00E3o de fluoresc\u00EAncia (FCS, do ingl\u00EAs fluorescence correlation spectroscopy) \u00E9 uma an\u00E1lise por correla\u00E7\u00E3o da flutua\u00E7\u00E3o da intensidade da fluoresc\u00EAncia. A an\u00E1lise prov\u00EA par\u00E2metros da f\u00EDsica sob as flutua\u00E7\u00F5es. Uma das aplica\u00E7\u00F5es interessantes desta t\u00E9cnica \u00E9 a an\u00E1lise das flutua\u00E7\u00F5es de concentra\u00E7\u00E3o de part\u00EDculas fluorescentes (mol\u00E9culas) em solu\u00E7\u00E3o. Nesta aplica\u00E7\u00E3o, a fluoresc\u00EAncia emitida a partir de um espa\u00E7o muito pequeno numa solu\u00E7\u00E3o que contenha um pequeno n\u00FAmero de part\u00EDculas fluorescentes (mol\u00E9culas) \u00E9 observada. A intensidade de fluoresc\u00EAncia \u00E9 flutuante, devido ao movimento Browniano das part\u00EDculas. Em outras palavras, o n\u00FAmero de part\u00EDculas no sub-espa\u00E7o definido pelo sistema \u00F3ptico modifica-se aleatoriamente em torno de um valor m\u00E9dio. A an\u00E1lise fornece o n\u00FAmero m\u00E9dio de part\u00EDculas fluorescentes e o tempo m\u00E9dio de difus\u00E3o, quando a part\u00EDcula passa atrav\u00E9s do espa\u00E7o. Por fim, tanto a concentra\u00E7\u00E3o e o tamanho das part\u00EDculas (mol\u00E9culas) s\u00E3o determinados. Ambos os par\u00E2metros s\u00E3o importantes na pesquisa em bioqu\u00EDmica, biof\u00EDsica e qu\u00EDmica."@pt . . . . "\uD615\uAD11 \uC0C1\uAD00 \uBD84\uAD11\uD559"@ko . . . . . . "Espectroscopia de correla\u00E7\u00E3o de fluoresc\u00EAncia"@pt . "Spectroscopie de corr\u00E9lation de fluorescence"@fr . . . "2589751"^^ . . . . . . . . . . . . . "Die Fluoreszenzkorrelationsspektroskopie (englisch fluorescence correlation spectroscopy, FCS) ist eine h\u00F6chstempfindliche optische Messmethode, die aus Fluktuationen in der Fluoreszenzintensit\u00E4t Informationen gewinnt. Mit FCS werden in der Regel Diffusionskonstanten, Konzentrationen und Bindungen zwischen verschiedenen diffundierenden Spezies gemessen. Die Methode wurde in den 1970er Jahren von , und Watt W. Webb entwickelt."@de . . . . . . "\u0424\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0442\u043D\u0430 \u043A\u043E\u0440\u0435\u043B\u044F\u0446\u0456\u0439\u043D\u0430 \u0441\u043F\u0435\u043A\u0442\u0440\u043E\u0441\u043A\u043E\u043F\u0456\u044F (\u0430\u043D\u0433\u043B. Fluorescence correlation spectroscopy \u0430\u0431\u043E FCS) \u2014 \u043E\u043F\u0442\u0438\u0447\u043D\u0438\u0439 \u043C\u0435\u0442\u043E\u0434, \u0449\u043E \u0432\u0438\u043A\u043E\u0440\u0438\u0441\u0442\u043E\u0432\u0443\u0454\u0442\u044C\u0441\u044F \u0432 \u0444\u0456\u0437\u0438\u0446\u0456, \u0445\u0456\u043C\u0456\u0457 \u0456 \u0431\u0456\u043E\u043B\u043E\u0433\u0456\u0457 \u0434\u043B\u044F \u0435\u043A\u0441\u043F\u0435\u0440\u0438\u043C\u0435\u043B\u044C\u043D\u0430\u043B\u044C\u043D\u043E\u0457 \u0445\u0430\u0440\u0430\u043A\u0442\u0435\u0440\u0438\u0437\u0430\u0446\u0456\u0457 \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0442\u043D\u0438\u0445 \u043C\u043E\u043B\u0435\u043A\u0443\u043B (\u0431\u0456\u043B\u043A\u0456\u0432, \u0456\u043D\u0448\u0438\u0445 \u0431\u0456\u043E\u043C\u043E\u043B\u0435\u043A\u0443\u043B, \u043B\u0456\u043A\u0456\u0432 \u0442\u0430 \u0456\u043D\u0448\u0438\u0445) \u0442\u0430 \u0457\u0445 \u0434\u0438\u043D\u0430\u043C\u0456\u043A\u0438. \u041C\u0435\u0442\u043E\u0434 \u0432\u0438\u043A\u043E\u0440\u0438\u0441\u0442\u043E\u0432\u0443\u0454 \u043A\u043E\u043D\u0444\u043E\u043A\u0430\u043B\u044C\u043D\u0438\u0439 \u0430\u0431\u043E \u043C\u0456\u043A\u0440\u043E\u0441\u043A\u043E\u043F, \u0437\u0430 \u0434\u043E\u043F\u043E\u043C\u043E\u0433\u043E\u044E \u044F\u043A\u043E\u0433\u043E \u0441\u0432\u0456\u0442\u043B\u043E \u0444\u043E\u043A\u0443\u0441\u0443\u0454\u0442\u044C\u0441\u044F \u0443 \u043D\u0435\u0432\u0435\u043B\u0438\u0447\u043A\u0456\u0439 (\u0434\u0438\u0444\u0440\u0430\u043A\u0446\u0456\u0439\u043D\u043E \u043E\u0431\u043C\u0435\u0436\u0435\u043D\u0456\u0439) \u0434\u0456\u043B\u044F\u043D\u0446\u0456 \u0437\u0440\u0430\u0437\u043A\u0443, \u0443 \u044F\u043A\u0456\u0439 \u0432\u0438\u043C\u0456\u0440\u044E\u0454\u0442\u044C\u0441\u044F \u0444\u0443\u043D\u043A\u0446\u0456\u044F \u0430\u0432\u0442\u043E\u043A\u043E\u0440\u0435\u043B\u044F\u0446\u0456\u0457 \u0443 \u0447\u0430\u0441\u0456 \u0456\u043D\u0442\u0435\u043D\u0441\u0438\u0432\u043D\u043E\u0441\u0442\u0456 \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0446\u0456\u0457. \u0406\u043D\u0442\u0435\u043D\u0441\u0438\u0432\u043D\u0456\u0441\u0442\u044C \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0446\u0456\u0457 \u0437\u043C\u0456\u043D\u044E\u0454\u0442\u044C\u0441\u044F \u0432\u043D\u0430\u0441\u043B\u0456\u0434\u043E\u043A \u0434\u0438\u0444\u0443\u0437\u0456\u0457, \u0445\u0456\u043C\u0456\u0447\u043D\u0438\u0445 \u0440\u0435\u0430\u043A\u0446\u0456\u0439, \u0430\u0433\u0440\u0435\u0433\u0430\u0446\u0456\u0457 \u0442\u043E\u0449\u043E. \u0422\u0430\u043A\u0438\u043C \u0447\u0438\u043D\u043E\u043C \u043C\u0435\u0442\u043E\u0434 \u0434\u043E\u0437\u0432\u043E\u043B\u044F\u0454 \u0434\u043E\u0441\u043B\u0456\u0434\u0436\u0443\u0432\u0430\u0442\u0438 \u0432\u043A\u0430\u0437\u0430\u043D\u0456 \u043F\u0440\u043E\u0446\u0435\u0441\u0438. FCS \u0454 \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0442\u043D\u0438\u043C \u0430\u043D\u0430\u043B\u043E\u0433\u043E\u043C , \u0449\u043E \u0432\u0438\u043A\u043E\u0440\u0438\u0441\u0442\u043E\u0432\u0443\u0454 \u043A\u043E\u0433\u0435\u0440\u0435\u043D\u0442\u043D\u0435 \u0440\u043E\u0437\u0441\u0456\u044E\u0432\u0430\u043D\u043D\u044F \u0441\u0432\u0456\u0442\u043B\u0430 \u0437\u0430\u043C\u0456\u0441\u0442\u044C \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0446\u0456\u0457. FCS \u0434\u043E\u0437\u0432\u043E\u043B\u044F\u0454 \u043E\u0442\u0440\u0438\u043C\u0443\u0432\u0430\u0442\u0438 \u043A\u0456\u043B\u044C\u043A\u0456\u0441\u043D\u0443 \u0456\u043D\u0444\u043E\u0440\u043C\u0430\u0446\u0456\u044E \u043F\u0440\u043E: \n* \u043A\u043E\u0435\u0444\u0456\u0446\u0456\u0454\u043D\u0442 \u0434\u0456\u0444\u0443\u0437\u0456\u0457 \n* \u0433\u0456\u0434\u0440\u043E\u0434\u0438\u043D\u0430\u043C\u0456\u0447\u043D\u0438\u0439 \u0440\u0430\u0434\u0456\u0443\u0441 \n* \u0441\u0435\u0440\u0435\u0434\u043D\u044E \u043A\u043E\u043D\u0446\u0435\u043D\u0442\u0440\u0430\u0446\u0456\u044E \n* \u043A\u0456\u043D\u0435\u0442\u0438\u043A\u0443 \u0445\u0456\u043C\u0456\u0447\u043D\u043E\u0457 \u0440\u0435\u0430\u043A\u0446\u0456\u0457 \u0417\u0430 \u0434\u043E\u043F\u043E\u043C\u043E\u0433\u043E\u044E \u0432\u0438\u043A\u043E\u0440\u0438\u0441\u0442\u0430\u043D\u043D\u044F \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0442\u043D\u0438\u0445 \u043C\u0430\u0440\u043A\u0435\u0440\u0456\u0432 \u0437 \u0440\u0456\u0437\u043D\u0438\u043C\u0438 \u0441\u043F\u0435\u043A\u0442\u0440\u0430\u043C\u0438, \u0441\u043F\u0435\u0446\u0438\u0444\u0456\u0447\u043D\u0438\u0445 \u0434\u043E \u043F\u0435\u0432\u043D\u0438\u0445 \u043C\u043E\u043B\u0435\u043A\u0443\u043B \u0432 \u0440\u043E\u0437\u0447\u0438\u043D\u0456, \u0431\u0430\u0433\u0430\u0442\u043E \u0440\u0456\u0437\u043D\u0438\u0445 \u0442\u0438\u043F\u0456\u0432 \u043C\u043E\u043B\u0435\u043A\u0443\u043B \u0432 \u0440\u043E\u0437\u0447\u0438\u043D\u0456 \u043C\u043E\u0436\u0443\u0442\u044C \u0434\u043E\u0441\u043B\u0456\u0434\u0436\u0443\u0432\u0430\u0442\u0438\u0441\u044F \u043F\u0440\u0430\u043A\u0442\u0438\u0447\u043D\u043E \u043E\u0434\u043D\u043E\u0447\u0430\u0441\u043D\u043E. \u0417\u0430\u0441\u0442\u043E\u0441\u043E\u0432\u0430\u043D\u043D\u044F \u0440\u0435\u043A\u043E\u043C\u0431\u0456\u043D\u0430\u043D\u0442\u043D\u0438\u0445 \u043C\u0435\u0442\u043E\u0434\u0456\u0432, \u0449\u043E \u0432\u0438\u043A\u043E\u0440\u0438\u0441\u0442\u043E\u0432\u0443\u044E\u0442\u044C \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0442\u043D\u0456 \u0431\u0456\u043B\u043A\u0438, \u0434\u043E\u0437\u0432\u043E\u043B\u044F\u0454 \u0442\u0430\u043A\u043E\u0436 \u043F\u0440\u043E\u0432\u043E\u0434\u0438\u0442\u0438 \u0437\u0430 \u0434\u043E\u043F\u043E\u043C\u043E\u0433\u043E\u044E FCS \u0434\u043E\u0441\u043B\u0456\u0434\u0436\u0435\u043D\u043D\u044F \u0436\u0438\u0432\u0438\u0445 \u043A\u043B\u0456\u0442\u0438\u043D."@uk . "Fluorescence correlation spectroscopy (FCS) is a statistical analysis, via time correlation, of stationary fluctuations of the fluorescence intensity. Its theoretical underpinning originated from L. Onsager's regression hypothesis. The analysis provides kinetic parameters of the physical processes underlying the fluctuations. One of the interesting applications of this is an analysis of the concentration fluctuations of fluorescent particles (molecules) in solution. In this application, the fluorescence emitted from a very tiny space in solution containing a small number of fluorescent particles (molecules) is observed. The fluorescence intensity is fluctuating due to Brownian motion of the particles. In other words, the number of the particles in the sub-space defined by the optical syst"@en . "61763"^^ . . . . . . . . "La Spectroscopie de Corr\u00E9lation de Fluorescence (SCF ou FCS pour l'anglais Fluorescence Correlation Spectroscopy) repose sur l'analyse des corr\u00E9lations des fluctuations de l'intensit\u00E9 de la fluorescence. L'analyse fournit les param\u00E8tres physiques gouvernant ces fluctuations. L'une des applications int\u00E9ressantes est l'analyse des fluctuations de la concentration de particules fluorescentes (souvent des mol\u00E9cules marqu\u00E9es) en solution. Dans cette application, on enregistre la fluorescence \u00E9mise par un tr\u00E8s faible volume ne contenant qu'un petit nombre de particules. L'intensit\u00E9 de la fluorescence fluctue alors \u00E0 cause du mouvement Brownien des particules, le nombre moyen de particules dans le sous-syst\u00E8me d\u00E9fini par le syst\u00E8me optique varie al\u00E9atoirement autour de sa valeur moyenne. L'analys"@fr . . "\uD615\uAD11 \uC0C1\uAD00 \uBD84\uAD11\uBC95(Fluorescence correlation spectroscopy)\uC740 \uC2DC\uAC04\uC5D0 \uB530\uB978 \uD615\uAD11 \uC138\uAE30\uC758 \uC694\uB3D9\uC744 \uCE21\uC815\uD574\uC11C \uD615\uAD11\uCCB4\uC758 \uD655\uC0B0\uACC4\uC218, \uC720\uCCB4\uC5ED\uD559\uC801 \uBC18\uACBD (hydrodynamic radius), \uD3C9\uADE0 \uC785\uC790\uC758 \uAC1C\uC218, \uD654\uD559\uBC18\uC751\uB960, \uACFC\uB3C4\uC801 \uC554\uC0C1\uD0DC(transient dark state; \uC608\uB97C \uB4E4\uBA74, singlet-triplet \uC804\uC774), \uD769\uC5B4\uC9D0(antibunching) \uB4F1\uC744 \uC815\uB7C9\uC801\uC73C\uB85C \uAD6C\uD560 \uC218 \uC788\uB294 \uB2E8\uBD84\uC790 \uCE21\uC815\uBC95\uC774\uB2E4."@ko . "1100857437"^^ . . . . "Die Fluoreszenzkorrelationsspektroskopie (englisch fluorescence correlation spectroscopy, FCS) ist eine h\u00F6chstempfindliche optische Messmethode, die aus Fluktuationen in der Fluoreszenzintensit\u00E4t Informationen gewinnt. Mit FCS werden in der Regel Diffusionskonstanten, Konzentrationen und Bindungen zwischen verschiedenen diffundierenden Spezies gemessen. Die Methode wurde in den 1970er Jahren von , und Watt W. Webb entwickelt."@de . . . "\u0424\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0442\u043D\u0430 \u043A\u043E\u0440\u0435\u043B\u044F\u0446\u0456\u0439\u043D\u0430 \u0441\u043F\u0435\u043A\u0442\u0440\u043E\u0441\u043A\u043E\u043F\u0456\u044F (\u0430\u043D\u0433\u043B. Fluorescence correlation spectroscopy \u0430\u0431\u043E FCS) \u2014 \u043E\u043F\u0442\u0438\u0447\u043D\u0438\u0439 \u043C\u0435\u0442\u043E\u0434, \u0449\u043E \u0432\u0438\u043A\u043E\u0440\u0438\u0441\u0442\u043E\u0432\u0443\u0454\u0442\u044C\u0441\u044F \u0432 \u0444\u0456\u0437\u0438\u0446\u0456, \u0445\u0456\u043C\u0456\u0457 \u0456 \u0431\u0456\u043E\u043B\u043E\u0433\u0456\u0457 \u0434\u043B\u044F \u0435\u043A\u0441\u043F\u0435\u0440\u0438\u043C\u0435\u043B\u044C\u043D\u0430\u043B\u044C\u043D\u043E\u0457 \u0445\u0430\u0440\u0430\u043A\u0442\u0435\u0440\u0438\u0437\u0430\u0446\u0456\u0457 \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0442\u043D\u0438\u0445 \u043C\u043E\u043B\u0435\u043A\u0443\u043B (\u0431\u0456\u043B\u043A\u0456\u0432, \u0456\u043D\u0448\u0438\u0445 \u0431\u0456\u043E\u043C\u043E\u043B\u0435\u043A\u0443\u043B, \u043B\u0456\u043A\u0456\u0432 \u0442\u0430 \u0456\u043D\u0448\u0438\u0445) \u0442\u0430 \u0457\u0445 \u0434\u0438\u043D\u0430\u043C\u0456\u043A\u0438. \u041C\u0435\u0442\u043E\u0434 \u0432\u0438\u043A\u043E\u0440\u0438\u0441\u0442\u043E\u0432\u0443\u0454 \u043A\u043E\u043D\u0444\u043E\u043A\u0430\u043B\u044C\u043D\u0438\u0439 \u0430\u0431\u043E \u043C\u0456\u043A\u0440\u043E\u0441\u043A\u043E\u043F, \u0437\u0430 \u0434\u043E\u043F\u043E\u043C\u043E\u0433\u043E\u044E \u044F\u043A\u043E\u0433\u043E \u0441\u0432\u0456\u0442\u043B\u043E \u0444\u043E\u043A\u0443\u0441\u0443\u0454\u0442\u044C\u0441\u044F \u0443 \u043D\u0435\u0432\u0435\u043B\u0438\u0447\u043A\u0456\u0439 (\u0434\u0438\u0444\u0440\u0430\u043A\u0446\u0456\u0439\u043D\u043E \u043E\u0431\u043C\u0435\u0436\u0435\u043D\u0456\u0439) \u0434\u0456\u043B\u044F\u043D\u0446\u0456 \u0437\u0440\u0430\u0437\u043A\u0443, \u0443 \u044F\u043A\u0456\u0439 \u0432\u0438\u043C\u0456\u0440\u044E\u0454\u0442\u044C\u0441\u044F \u0444\u0443\u043D\u043A\u0446\u0456\u044F \u0430\u0432\u0442\u043E\u043A\u043E\u0440\u0435\u043B\u044F\u0446\u0456\u0457 \u0443 \u0447\u0430\u0441\u0456 \u0456\u043D\u0442\u0435\u043D\u0441\u0438\u0432\u043D\u043E\u0441\u0442\u0456 \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0446\u0456\u0457. \u0406\u043D\u0442\u0435\u043D\u0441\u0438\u0432\u043D\u0456\u0441\u0442\u044C \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0446\u0456\u0457 \u0437\u043C\u0456\u043D\u044E\u0454\u0442\u044C\u0441\u044F \u0432\u043D\u0430\u0441\u043B\u0456\u0434\u043E\u043A \u0434\u0438\u0444\u0443\u0437\u0456\u0457, \u0445\u0456\u043C\u0456\u0447\u043D\u0438\u0445 \u0440\u0435\u0430\u043A\u0446\u0456\u0439, \u0430\u0433\u0440\u0435\u0433\u0430\u0446\u0456\u0457 \u0442\u043E\u0449\u043E. \u0422\u0430\u043A\u0438\u043C \u0447\u0438\u043D\u043E\u043C \u043C\u0435\u0442\u043E\u0434 \u0434\u043E\u0437\u0432\u043E\u043B\u044F\u0454 \u0434\u043E\u0441\u043B\u0456\u0434\u0436\u0443\u0432\u0430\u0442\u0438 \u0432\u043A\u0430\u0437\u0430\u043D\u0456 \u043F\u0440\u043E\u0446\u0435\u0441\u0438. FCS \u0454 \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0442\u043D\u0438\u043C \u0430\u043D\u0430\u043B\u043E\u0433\u043E\u043C , \u0449\u043E \u0432\u0438\u043A\u043E\u0440\u0438\u0441\u0442\u043E\u0432\u0443\u0454 \u043A\u043E\u0433\u0435\u0440\u0435\u043D\u0442\u043D\u0435 \u0440\u043E\u0437\u0441\u0456\u044E\u0432\u0430\u043D\u043D\u044F \u0441\u0432\u0456\u0442\u043B\u0430 \u0437\u0430\u043C\u0456\u0441\u0442\u044C \u0444\u043B\u044E\u043E\u0440\u0435\u0441\u0446\u0435\u043D\u0446\u0456\u0457."@uk . "\u86CD\u5149\u76F8\u95A2\u5206\u5149\u6CD5\uFF08\u3051\u3044\u3053\u3046\u305D\u3046\u304B\u3093\u3076\u3093\u3053\u3046\u307B\u3046\u3001Fluorescence correlation spectroscopy\uFF1AFCS\uFF09\u3068\u306F\u3001\u86CD\u5149\u7269\u8CEA\u306E\u3092\u8ABF\u3079\u308B\u305F\u3081\u306B\u7528\u3044\u3089\u308C\u308B\u65B9\u6CD5\u3067\u3001\u86CD\u5149\u306E\u81EA\u5DF1\u76F8\u95A2\u3092\u5229\u7528\u3059\u308B\u3002\u7269\u7406\u5B66\u3001\u5316\u5B66\u3001\u751F\u7269\u5B66\u3067\u5FDC\u7528\u3055\u308C\u3066\u3044\u308B\u3002\u521D\u3081\u3066\u306E\u5B9F\u9A13\u306F1972\u5E74\u306B\u884C\u308F\u308C\u305F\u304C\u3001\u7279\u306B1990\u5E74\u4EE3\u306B\u6280\u8853\u304C\u767A\u5C55\u3057\u305F\u3002\u73FE\u5728\u3067\u306F\u86CD\u5149\u7269\u8CEA\u306B\u9650\u3089\u305A\u3001\u305D\u306E\u4ED6\u306E\u767A\u5149\uFF08\u53CD\u5C04\u3001\u6563\u4E71\u3001Q\u30C9\u30C3\u30C8\u306A\u3069\u306E\u767A\u5149\u3001\u30EA\u30F3\u5149\u3001\u307E\u305F\u86CD\u5149\u5171\u9CF4\u30A8\u30CD\u30EB\u30AE\u30FC\u79FB\u52D5(FRET)\u306A\u3069\uFF09\u306B\u3082\u540C\u3058\u539F\u7406\u304C\u5FDC\u7528\u3055\u308C\u308B\u3002\u3055\u3089\u306B\u81EA\u5DF1\u76F8\u95A2\u3067\u306A\u304F2\u3064\u306E\u86CD\u5149\u30C1\u30E3\u30CD\u30EB\u306E\u76F8\u4E92\u76F8\u95A2\u3092\u7528\u3044\u308B\uFF08Fluorescence cross-correlation spectroscopy\uFF1AFCCS\uFF09\u3082\u3042\u308B\u3002 \u5206\u5149\u3068\u3044\u3046\u8A00\u8449\u306F\u666E\u901A\u3001\u6CE2\u9577\u30B9\u30DA\u30AF\u30C8\u30EB\u306E\u610F\u5473\u306B\u7528\u3044\u3089\u308C\u3066\u3044\u308B\u304C\u3001\u3053\u306E\u5834\u5408\u306B\u306F\u6642\u9593\u30B9\u30DA\u30AF\u30C8\u30EB\u3092\u610F\u5473\u3059\u308B\u3002"@ja . "Fluorescence correlation spectroscopy (FCS) is a statistical analysis, via time correlation, of stationary fluctuations of the fluorescence intensity. Its theoretical underpinning originated from L. Onsager's regression hypothesis. The analysis provides kinetic parameters of the physical processes underlying the fluctuations. One of the interesting applications of this is an analysis of the concentration fluctuations of fluorescent particles (molecules) in solution. In this application, the fluorescence emitted from a very tiny space in solution containing a small number of fluorescent particles (molecules) is observed. The fluorescence intensity is fluctuating due to Brownian motion of the particles. In other words, the number of the particles in the sub-space defined by the optical system is randomly changing around the average number. The analysis gives the average number of fluorescent particles and average diffusion time, when the particle is passing through the space. Eventually, both the concentration and size of the particle (molecule) are determined. Both parameters are important in biochemical research, biophysics, and chemistry. FCS is such a sensitive analytical tool because it observes a small number of molecules (nanomolar to picomolar concentrations) in a small volume (~1\u03BCm3). In contrast to other methods (such as HPLC analysis) FCS has no physical separation process; instead, it achieves its spatial resolution through its optics. Furthermore, FCS enables observation of fluorescence-tagged molecules in the biochemical pathway in intact living cells. This opens a new area, \"in situ or in vivo biochemistry\": tracing the biochemical pathway in intact cells and organs. Commonly, FCS is employed in the context of optical microscopy, in particular Confocal microscopy or two-photon excitation microscopy. In these techniques light is focused on a sample and the measured fluorescence intensity fluctuations (due to diffusion, physical or chemical reactions, aggregation, etc.) are analyzed using the temporal autocorrelation. Because the measured property is essentially related to the magnitude and/or the amount of fluctuations, there is an optimum measurement regime at the level when individual species enter or exit the observation volume (or turn on and off in the volume). When too many entities are measured at the same time the overall fluctuations are small in comparison to the total signal and may not be resolvable \u2013 in the other direction, if the individual fluctuation-events are too sparse in time, one measurement may take prohibitively too long. FCS is in a way the fluorescent counterpart to dynamic light scattering, which uses coherent light scattering, instead of (incoherent) fluorescence. When an appropriate model is known, FCS can be used to obtain quantitative information such as \n* diffusion coefficients \n* hydrodynamic radii \n* average concentrations \n* kinetic chemical reaction rates \n* singlet-triplet dynamics Because fluorescent markers come in a variety of colors and can be specifically bound to a particular molecule (e.g. proteins, polymers, metal-complexes, etc.), it is possible to study the behavior of individual molecules (in rapid succession in composite solutions). With the development of sensitive detectors such as avalanche photodiodes the detection of the fluorescence signal coming from individual molecules in highly dilute samples has become practical. With this emerged the possibility to conduct FCS experiments in a wide variety of specimens, ranging from materials science to biology. The advent of engineered cells with genetically tagged proteins (like green fluorescent protein) has made FCS a common tool for studying molecular dynamics in living cells."@en . . . . . . . . . . "\u86CD\u5149\u76F8\u95A2\u5206\u5149\u6CD5\uFF08\u3051\u3044\u3053\u3046\u305D\u3046\u304B\u3093\u3076\u3093\u3053\u3046\u307B\u3046\u3001Fluorescence correlation spectroscopy\uFF1AFCS\uFF09\u3068\u306F\u3001\u86CD\u5149\u7269\u8CEA\u306E\u3092\u8ABF\u3079\u308B\u305F\u3081\u306B\u7528\u3044\u3089\u308C\u308B\u65B9\u6CD5\u3067\u3001\u86CD\u5149\u306E\u81EA\u5DF1\u76F8\u95A2\u3092\u5229\u7528\u3059\u308B\u3002\u7269\u7406\u5B66\u3001\u5316\u5B66\u3001\u751F\u7269\u5B66\u3067\u5FDC\u7528\u3055\u308C\u3066\u3044\u308B\u3002\u521D\u3081\u3066\u306E\u5B9F\u9A13\u306F1972\u5E74\u306B\u884C\u308F\u308C\u305F\u304C\u3001\u7279\u306B1990\u5E74\u4EE3\u306B\u6280\u8853\u304C\u767A\u5C55\u3057\u305F\u3002\u73FE\u5728\u3067\u306F\u86CD\u5149\u7269\u8CEA\u306B\u9650\u3089\u305A\u3001\u305D\u306E\u4ED6\u306E\u767A\u5149\uFF08\u53CD\u5C04\u3001\u6563\u4E71\u3001Q\u30C9\u30C3\u30C8\u306A\u3069\u306E\u767A\u5149\u3001\u30EA\u30F3\u5149\u3001\u307E\u305F\u86CD\u5149\u5171\u9CF4\u30A8\u30CD\u30EB\u30AE\u30FC\u79FB\u52D5(FRET)\u306A\u3069\uFF09\u306B\u3082\u540C\u3058\u539F\u7406\u304C\u5FDC\u7528\u3055\u308C\u308B\u3002\u3055\u3089\u306B\u81EA\u5DF1\u76F8\u95A2\u3067\u306A\u304F2\u3064\u306E\u86CD\u5149\u30C1\u30E3\u30CD\u30EB\u306E\u76F8\u4E92\u76F8\u95A2\u3092\u7528\u3044\u308B\uFF08Fluorescence cross-correlation spectroscopy\uFF1AFCCS\uFF09\u3082\u3042\u308B\u3002 \u5206\u5149\u3068\u3044\u3046\u8A00\u8449\u306F\u666E\u901A\u3001\u6CE2\u9577\u30B9\u30DA\u30AF\u30C8\u30EB\u306E\u610F\u5473\u306B\u7528\u3044\u3089\u308C\u3066\u3044\u308B\u304C\u3001\u3053\u306E\u5834\u5408\u306B\u306F\u6642\u9593\u30B9\u30DA\u30AF\u30C8\u30EB\u3092\u610F\u5473\u3059\u308B\u3002"@ja . . . . . . "Spektroskopia korelacji fluorescencji (FCS, z ang. fluorescence correlation spectroscopy) \u2013 technika spektroskopowa wykorzystuj\u0105ca zjawisko fluktuacji nat\u0119\u017Cenia fluorescencji w ma\u0142ej o\u015Bwietlonej obj\u0119to\u015Bci do uzyskiwania informacji o procesach, kt\u00F3re s\u0105 \u017Ar\u00F3d\u0142em tych fluktuacji."@pl . "\uD615\uAD11 \uC0C1\uAD00 \uBD84\uAD11\uBC95(Fluorescence correlation spectroscopy)\uC740 \uC2DC\uAC04\uC5D0 \uB530\uB978 \uD615\uAD11 \uC138\uAE30\uC758 \uC694\uB3D9\uC744 \uCE21\uC815\uD574\uC11C \uD615\uAD11\uCCB4\uC758 \uD655\uC0B0\uACC4\uC218, \uC720\uCCB4\uC5ED\uD559\uC801 \uBC18\uACBD (hydrodynamic radius), \uD3C9\uADE0 \uC785\uC790\uC758 \uAC1C\uC218, \uD654\uD559\uBC18\uC751\uB960, \uACFC\uB3C4\uC801 \uC554\uC0C1\uD0DC(transient dark state; \uC608\uB97C \uB4E4\uBA74, singlet-triplet \uC804\uC774), \uD769\uC5B4\uC9D0(antibunching) \uB4F1\uC744 \uC815\uB7C9\uC801\uC73C\uB85C \uAD6C\uD560 \uC218 \uC788\uB294 \uB2E8\uBD84\uC790 \uCE21\uC815\uBC95\uC774\uB2E4."@ko . . . "\u86CD\u5149\u76F8\u95A2\u5206\u5149\u6CD5"@ja . . . . . "Spektroskopia korelacji fluorescencji"@pl . . . . . . . "Espectroscopia de correla\u00E7\u00E3o de fluoresc\u00EAncia (FCS, do ingl\u00EAs fluorescence correlation spectroscopy) \u00E9 uma an\u00E1lise por correla\u00E7\u00E3o da flutua\u00E7\u00E3o da intensidade da fluoresc\u00EAncia. A an\u00E1lise prov\u00EA par\u00E2metros da f\u00EDsica sob as flutua\u00E7\u00F5es. Uma das aplica\u00E7\u00F5es interessantes desta t\u00E9cnica \u00E9 a an\u00E1lise das flutua\u00E7\u00F5es de concentra\u00E7\u00E3o de part\u00EDculas fluorescentes (mol\u00E9culas) em solu\u00E7\u00E3o. Nesta aplica\u00E7\u00E3o, a fluoresc\u00EAncia emitida a partir de um espa\u00E7o muito pequeno numa solu\u00E7\u00E3o que contenha um pequeno n\u00FAmero de part\u00EDculas fluorescentes (mol\u00E9culas) \u00E9 observada. A intensidade de fluoresc\u00EAncia \u00E9 flutuante, devido ao movimento Browniano das part\u00EDculas. Em outras palavras, o n\u00FAmero de part\u00EDculas no sub-espa\u00E7o definido pelo sistema \u00F3ptico modifica-se aleatoriamente em torno de um valor m\u00E9dio. A an\u00E1lise fornece o n"@pt . . . "Spektroskopia korelacji fluorescencji (FCS, z ang. fluorescence correlation spectroscopy) \u2013 technika spektroskopowa wykorzystuj\u0105ca zjawisko fluktuacji nat\u0119\u017Cenia fluorescencji w ma\u0142ej o\u015Bwietlonej obj\u0119to\u015Bci do uzyskiwania informacji o procesach, kt\u00F3re s\u0105 \u017Ar\u00F3d\u0142em tych fluktuacji."@pl . . . . "Fluoreszenzkorrelationsspektroskopie"@de . .