"Griffithsgrupp"@sv . . "In mathematics, more specifically in algebraic geometry, the Griffiths group of a projective complex manifold X measures the difference between homological equivalence and algebraic equivalence, which are two important equivalence relations of algebraic cycles. More precisely, it is defined as where denotes the group of algebraic cycles of some fixed codimension k and the subscripts indicate the groups that are homologically trivial, respectively algebraically equivalent to zero."@en . . . . "Inom matematiken \u00E4r Griffithsgruppen av en X en grupp som m\u00E4ter skillnaden mellan homologisk och algebraisk ekvivalens, tv\u00E5 viktiga ekvivalensrelationer av . Mer precist definieras den som d\u00E4r betecknar gruppen av algebraiska cykler av n\u00E5gon fixerad kodimension k och underindexen s\u00E4ger att elementen i gruppen \u00E4r homologiskt triviala respektive algebraiskt ekvivalenta till noll. Griffithsgruppen introducerades av , som bevisade att f\u00F6r en allm\u00E4n femtegradskurva i (projektiva 4-rummet) \u00E4r gruppen group inte en torsionsgrupp."@sv . . . . "44750391"^^ . . . . "Griffiths group"@en . "727609033"^^ . "Inom matematiken \u00E4r Griffithsgruppen av en X en grupp som m\u00E4ter skillnaden mellan homologisk och algebraisk ekvivalens, tv\u00E5 viktiga ekvivalensrelationer av . Mer precist definieras den som d\u00E4r betecknar gruppen av algebraiska cykler av n\u00E5gon fixerad kodimension k och underindexen s\u00E4ger att elementen i gruppen \u00E4r homologiskt triviala respektive algebraiskt ekvivalenta till noll. Griffithsgruppen introducerades av , som bevisade att f\u00F6r en allm\u00E4n femtegradskurva i (projektiva 4-rummet) \u00E4r gruppen group inte en torsionsgrupp."@sv . . "In mathematics, more specifically in algebraic geometry, the Griffiths group of a projective complex manifold X measures the difference between homological equivalence and algebraic equivalence, which are two important equivalence relations of algebraic cycles. More precisely, it is defined as where denotes the group of algebraic cycles of some fixed codimension k and the subscripts indicate the groups that are homologically trivial, respectively algebraically equivalent to zero. This group was introduced by Phillip Griffiths who showed that for a general quintic in (projective 4-space), the group is not a torsion group."@en . . . "1079"^^ . . . . .