"\u0406\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u044C\u043D\u0438\u0439 \u043F\u043E\u0440\u044F\u0434\u043E\u043A"@uk . . . . "In mathematics, especially order theory,the interval order for a collection of intervals on the real lineis the partial order corresponding to their left-to-right precedence relation\u2014one interval, I1, being considered less than another, I2, if I1 is completely to the left of I2.More formally, a countable poset is an interval order if and only ifthere exists a bijection from to a set of real intervals,so ,such that for any we have in exactly when .Such posets may be equivalentlycharacterized as those with no induced subposet isomorphic to thepair of two-element chains, in other words as the -free posets."@en . . . . . . "1111766889"^^ . . "\u0423 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u0446\u0456, \u043E\u0441\u043E\u0431\u043B\u0438\u0432\u043E \u0443 \u0442\u0435\u043E\u0440\u0456\u0457 \u043F\u043E\u0440\u044F\u0434\u043A\u0443, \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u044C\u043D\u0438\u0439 \u043F\u043E\u0440\u044F\u0434\u043E\u043A \u0434\u043B\u044F \u043D\u0430\u0431\u043E\u0440\u0443 \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u0456\u0432 \u043D\u0430 \u0434\u0456\u0439\u0441\u043D\u0456\u0439 \u043F\u0440\u044F\u043C\u0456\u0439\u0454 \u0447\u0430\u0441\u0442\u043A\u043E\u0432\u0438\u043C \u043F\u043E\u0440\u044F\u0434\u043A\u043E\u043C, \u0449\u043E \u0432\u0456\u0434\u043F\u043E\u0432\u0456\u0434\u0430\u0454 \u0440\u043E\u0437\u0442\u0430\u0448\u0443\u0432\u0430\u043D\u043D\u044E \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u0456\u0432 \u043D\u0430 \u043F\u0440\u044F\u043C\u0456\u0439. \u0411\u0456\u043B\u044C\u0448 \u0444\u043E\u0440\u043C\u0430\u043B\u044C\u043D\u043E, \u0447\u0430\u0441\u0442\u043A\u043E\u0432\u043E \u0432\u043F\u043E\u0440\u044F\u0434\u043A\u043E\u0432\u0430\u043D\u0430 \u043C\u043D\u043E\u0436\u0438\u043D\u0430 \u0454 \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u044C\u043D\u0438\u043C \u043F\u043E\u0440\u044F\u0434\u043A\u043E\u043C \u0442\u043E\u0434\u0456 \u0456 \u0442\u0456\u043B\u044C\u043A\u0438 \u0442\u043E\u0434\u0456,\u043A\u043E\u043B\u0438 \u0456\u0441\u043D\u0443\u0454 \u0431\u0456\u0454\u043A\u0446\u0456\u044F \u0437 \u0434\u043E \u0434\u0435\u044F\u043A\u043E\u0457 \u043C\u043D\u043E\u0436\u0438\u043D\u0438 \u0434\u0456\u0439\u0441\u043D\u0438\u0445 \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u0456\u0432: ,\u0442\u0430\u043A\u0430 \u0449\u043E: \u0406\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u044C\u043D\u0438\u0439 \u043F\u043E\u0440\u044F\u0434\u043E\u043A, \u0432\u0438\u0437\u043D\u0430\u0447\u0435\u043D\u0438\u0439 \u043E\u0434\u0438\u043D\u0438\u0447\u043D\u0438\u043C\u0438 \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u0430\u043C\u0438, \u0454 . \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u044C\u043D\u043E\u0433\u043E \u043F\u043E\u0440\u044F\u0434\u043A\u0443 \u0454 \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u044C\u043D\u0438\u043C \u0433\u0440\u0430\u0444\u043E\u043C"@uk . . . . . . . . "\u0423 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u0446\u0456, \u043E\u0441\u043E\u0431\u043B\u0438\u0432\u043E \u0443 \u0442\u0435\u043E\u0440\u0456\u0457 \u043F\u043E\u0440\u044F\u0434\u043A\u0443, \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u044C\u043D\u0438\u0439 \u043F\u043E\u0440\u044F\u0434\u043E\u043A \u0434\u043B\u044F \u043D\u0430\u0431\u043E\u0440\u0443 \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u0456\u0432 \u043D\u0430 \u0434\u0456\u0439\u0441\u043D\u0456\u0439 \u043F\u0440\u044F\u043C\u0456\u0439\u0454 \u0447\u0430\u0441\u0442\u043A\u043E\u0432\u0438\u043C \u043F\u043E\u0440\u044F\u0434\u043A\u043E\u043C, \u0449\u043E \u0432\u0456\u0434\u043F\u043E\u0432\u0456\u0434\u0430\u0454 \u0440\u043E\u0437\u0442\u0430\u0448\u0443\u0432\u0430\u043D\u043D\u044E \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u0456\u0432 \u043D\u0430 \u043F\u0440\u044F\u043C\u0456\u0439. \u0411\u0456\u043B\u044C\u0448 \u0444\u043E\u0440\u043C\u0430\u043B\u044C\u043D\u043E, \u0447\u0430\u0441\u0442\u043A\u043E\u0432\u043E \u0432\u043F\u043E\u0440\u044F\u0434\u043A\u043E\u0432\u0430\u043D\u0430 \u043C\u043D\u043E\u0436\u0438\u043D\u0430 \u0454 \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u044C\u043D\u0438\u043C \u043F\u043E\u0440\u044F\u0434\u043A\u043E\u043C \u0442\u043E\u0434\u0456 \u0456 \u0442\u0456\u043B\u044C\u043A\u0438 \u0442\u043E\u0434\u0456,\u043A\u043E\u043B\u0438 \u0456\u0441\u043D\u0443\u0454 \u0431\u0456\u0454\u043A\u0446\u0456\u044F \u0437 \u0434\u043E \u0434\u0435\u044F\u043A\u043E\u0457 \u043C\u043D\u043E\u0436\u0438\u043D\u0438 \u0434\u0456\u0439\u0441\u043D\u0438\u0445 \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u0456\u0432: ,\u0442\u0430\u043A\u0430 \u0449\u043E: \u0406\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u044C\u043D\u0438\u0439 \u043F\u043E\u0440\u044F\u0434\u043E\u043A, \u0432\u0438\u0437\u043D\u0430\u0447\u0435\u043D\u0438\u0439 \u043E\u0434\u0438\u043D\u0438\u0447\u043D\u0438\u043C\u0438 \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u0430\u043C\u0438, \u0454 . \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u044C\u043D\u043E\u0433\u043E \u043F\u043E\u0440\u044F\u0434\u043A\u0443 \u0454 \u0456\u043D\u0442\u0435\u0440\u0432\u0430\u043B\u044C\u043D\u0438\u043C \u0433\u0440\u0430\u0444\u043E\u043C"@uk . . . . . . . . . "In mathematics, especially order theory,the interval order for a collection of intervals on the real lineis the partial order corresponding to their left-to-right precedence relation\u2014one interval, I1, being considered less than another, I2, if I1 is completely to the left of I2.More formally, a countable poset is an interval order if and only ifthere exists a bijection from to a set of real intervals,so ,such that for any we have in exactly when .Such posets may be equivalentlycharacterized as those with no induced subposet isomorphic to thepair of two-element chains, in other words as the -free posets. The subclass of interval orders obtained by restricting the intervals to those of unit length, so they all have the form , is precisely the semiorders. The complement of the comparability graph of an interval order is the interval graph . Interval orders should not be confused with the interval-containment orders, which are the inclusion orders on intervals on the real line (equivalently, the orders of dimension \u2264 2)."@en . "11680645"^^ . . . "6965"^^ . . . . . . . "Interval order"@en . . . . . . . . . . . . . . . . .