. . . . . . . . . . . . . "Die Raster-Kelvin-Mikroskopie (oft KPFM oder KFM abgek\u00FCrzt vom englischen Begriff Kelvin (Probe) Force Microscopy, manchmal auch SKPM \u2013 Scanning Kelvin Probe Microscopy) ist ein Verfahren zur Messung des lokal aufgel\u00F6sten einer Probe. Entwickelt wurde die von der Rasterkraftmikroskopie (AFM) weiterentwickelte Messmethode durch Nonnenmacher, O\u2019Boyle und Wickramasinghe in den 1990er Jahren. Neben klassischen materialwissenschaftlichen Fragestellungen wie z. B. im Bereich der Solarzellenentwicklung oder Korrosionsforschung wird KPFM inzwischen auch mehr und mehr im Bereich der Biologie angewendet."@de . . . "Kelvin probe force microscopy (KPFM), also known as surface potential microscopy, is a noncontact variant of atomic force microscopy (AFM). By raster scanning in the x,y plane the work function of the sample can be locally mapped for correlation with sample features. When there is little or no magnification, this approach can be described as using a scanning Kelvin probe (SKP). These techniques are predominantly used to measure corrosion and coatings."@en . . "2207911"^^ . . "Kelvin probe force microscope"@en . . . . . . . . . . . . "Die Raster-Kelvin-Mikroskopie (oft KPFM oder KFM abgek\u00FCrzt vom englischen Begriff Kelvin (Probe) Force Microscopy, manchmal auch SKPM \u2013 Scanning Kelvin Probe Microscopy) ist ein Verfahren zur Messung des lokal aufgel\u00F6sten einer Probe. Entwickelt wurde die von der Rasterkraftmikroskopie (AFM) weiterentwickelte Messmethode durch Nonnenmacher, O\u2019Boyle und Wickramasinghe in den 1990er Jahren. Neben klassischen materialwissenschaftlichen Fragestellungen wie z. B. im Bereich der Solarzellenentwicklung oder Korrosionsforschung wird KPFM inzwischen auch mehr und mehr im Bereich der Biologie angewendet."@de . . . "Raster-Kelvin-Mikroskopie"@de . . . . . "\u5F00\u5C14\u6587\u63A2\u9488\u529B\u663E\u5FAE\u93E1"@zh . . "\u5F00\u5C14\u6587\u63A2\u9488\u529B\u663E\u5FAE\u93E1\uFF08Kelvin probe force microscope, KPFM\uFF09\u662F\u4E00\u7A2E\u539F\u5B50\u529B\u986F\u5FAE\u93E1\uFF0C\u65BC1991\u5E74\u554F\u4E16\u3002\u5F00\u5C14\u6587\u63A2\u9488\u529B\u663E\u5FAE\u93E1\u5229\u7528\u5FAE\u61F8\u81C2\u611F\u53D7\u548C\u653E\u5927\u61F8\u81C2\u4E0A\u5C16\u7D30\u63A2\u91DD\u8207\u53D7\u6E2C\u6A23\u54C1\u539F\u5B50\u4E4B\u9593\u7684\u4F5C\u7528\u529B\uFF0C\u5F9E\u800C\u9054\u5230\u6AA2\u6E2C\u7684\u76EE\u7684\uFF0C\u5177\u6709\u539F\u5B50\u7D1A\u7684\u5206\u8FA8\u7387\u3002"@zh . . . . . . . . . . . . "Kelvin probe force microscopy (KPFM), also known as surface potential microscopy, is a noncontact variant of atomic force microscopy (AFM). By raster scanning in the x,y plane the work function of the sample can be locally mapped for correlation with sample features. When there is little or no magnification, this approach can be described as using a scanning Kelvin probe (SKP). These techniques are predominantly used to measure corrosion and coatings. With KPFM, the work function of surfaces can be observed at atomic or molecular scales. The work function relates to many surface phenomena, including catalytic activity, reconstruction of surfaces, doping and band-bending of semiconductors, charge trapping in dielectrics and corrosion. The map of the work function produced by KPFM gives information about the composition and electronic state of the local structures on the surface of a solid."@en . . "A microscopia Kelvin (KPFM \u2013 Kelvin probe force microscopy) ou tamb\u00E9m chamada microscopia de potencial de superf\u00EDcie proposta por Nonnermacher em 1991, \u00E9 uma t\u00E9cnica de resolu\u00E7\u00E3o at\u00F4mica e nanom\u00E9trica sendo uma variante da microscopia de for\u00E7a at\u00F4mica onde um cantilever metalizado \u00E9 capaz de medir a diferen\u00E7a de potencial entre a ponteira nele contido e a superf\u00EDcie da amostra. Atrav\u00E9s desta medi\u00E7\u00E3o, pode-se obter a fun\u00E7\u00E3o trabalho caracter\u00EDstica de cada \u00E1tomo da superf\u00EDcie da amostra o que d\u00E1 a exata composi\u00E7\u00E3o em n\u00EDvel at\u00F4mico da superf\u00EDcie da amostra. Atrav\u00E9s do conhecimento da fun\u00E7\u00E3o trabalho da superf\u00EDcie da amostra, v\u00E1rias aplica\u00E7\u00F5es s\u00E3o poss\u00EDveis, desde reconstru\u00E7\u00E3o de superf\u00EDcies uma vez que o mapeamento da mesma permitir\u00E1 detectar defeitos, detec\u00E7\u00E3o de corros\u00E3o uma vez que a fun\u00E7\u00E3o trabalho dos \u00E1tomos de mol\u00E9culas resultantes de tal fen\u00F4meno ser\u00E3o diferentes da fun\u00E7\u00E3o dos \u00E1tomos da superf\u00EDcie ideal, aplica\u00E7\u00F5es semicondutoras e detec\u00E7\u00E3o de cargas aprisionadas em diel\u00E9tricos. Aplica\u00E7\u00F5es biol\u00F3gicas tamb\u00E9m s\u00E3o poss\u00EDveis, como por exemplo, a obten\u00E7\u00E3o de topografia e do potencial de superf\u00EDcie de uma \u00FAnica mol\u00E9cula de DNA conforme citado nas se\u00E7\u00F5es adiantes."@pt . . . . "A microscopia Kelvin (KPFM \u2013 Kelvin probe force microscopy) ou tamb\u00E9m chamada microscopia de potencial de superf\u00EDcie proposta por Nonnermacher em 1991, \u00E9 uma t\u00E9cnica de resolu\u00E7\u00E3o at\u00F4mica e nanom\u00E9trica sendo uma variante da microscopia de for\u00E7a at\u00F4mica onde um cantilever metalizado \u00E9 capaz de medir a diferen\u00E7a de potencial entre a ponteira nele contido e a superf\u00EDcie da amostra. Atrav\u00E9s desta medi\u00E7\u00E3o, pode-se obter a fun\u00E7\u00E3o trabalho caracter\u00EDstica de cada \u00E1tomo da superf\u00EDcie da amostra o que d\u00E1 a exata composi\u00E7\u00E3o em n\u00EDvel at\u00F4mico da superf\u00EDcie da amostra."@pt . . . . . . . . . . . . . . . . . . . . . . . "February 2021"@en . . . . . "\u30B1\u30EB\u30D3\u30F3\u30D7\u30ED\u30FC\u30D6\u30D5\u30A9\u30FC\u30B9\u9855\u5FAE\u93E1\uFF08\u30B1\u30EB\u30D3\u30F3\u30D7\u30ED\u30FC\u30D6\u30D5\u30A9\u30FC\u30B9\u3051\u3093\u3073\u304D\u3087\u3046\u3001\u82F1: Kelvin probe Force Microscopy: KFM\uFF09\u306F\u3001\u539F\u5B50\u9593\u529B\u9855\u5FAE\u93E1 (AFM) \u3092\u5143\u306B\u958B\u767A\u3055\u308C\u305F\u9855\u5FAE\u93E1\u306E\u4E00\u7A2E\u3002\u30A4\u30AE\u30EA\u30B9\u306E\u30B1\u30EB\u30D3\u30F3\u537F\u304C\u63A5\u89E6\u96FB\u4F4D\u5DEE\u3068\u3057\u3066\u77ED\u91DD\u3068\u8A66\u6599\u3068\u306E\u96FB\u4F4D\u5DEE\u304C\u5F97\u3089\u308C\u308B\u3053\u3068\u3092\u767A\u898B\u3057\u305F\u4E8B\u304C\u540D\u524D\u306E\u7531\u6765\u3068\u306A\u3063\u3066\u3044\u308B\u3002"@ja . . "Why electron flow from the lower to the higher fermi level? Usually the electron flow is in the direction to the lower fermi level so that the energy is minimized, see e.g. https://www.britannica.com/science/Fermi-level"@en . . . . . . . . "Microscopia kelvin"@pt . . . "\u30B1\u30EB\u30D3\u30F3\u30D7\u30ED\u30FC\u30D6\u30D5\u30A9\u30FC\u30B9\u9855\u5FAE\u93E1\uFF08\u30B1\u30EB\u30D3\u30F3\u30D7\u30ED\u30FC\u30D6\u30D5\u30A9\u30FC\u30B9\u3051\u3093\u3073\u304D\u3087\u3046\u3001\u82F1: Kelvin probe Force Microscopy: KFM\uFF09\u306F\u3001\u539F\u5B50\u9593\u529B\u9855\u5FAE\u93E1 (AFM) \u3092\u5143\u306B\u958B\u767A\u3055\u308C\u305F\u9855\u5FAE\u93E1\u306E\u4E00\u7A2E\u3002\u30A4\u30AE\u30EA\u30B9\u306E\u30B1\u30EB\u30D3\u30F3\u537F\u304C\u63A5\u89E6\u96FB\u4F4D\u5DEE\u3068\u3057\u3066\u77ED\u91DD\u3068\u8A66\u6599\u3068\u306E\u96FB\u4F4D\u5DEE\u304C\u5F97\u3089\u308C\u308B\u3053\u3068\u3092\u767A\u898B\u3057\u305F\u4E8B\u304C\u540D\u524D\u306E\u7531\u6765\u3068\u306A\u3063\u3066\u3044\u308B\u3002"@ja . . . . . . "1097495861"^^ . . . "33732"^^ . . . . . . . . . . . . . . . "\u5F00\u5C14\u6587\u63A2\u9488\u529B\u663E\u5FAE\u93E1\uFF08Kelvin probe force microscope, KPFM\uFF09\u662F\u4E00\u7A2E\u539F\u5B50\u529B\u986F\u5FAE\u93E1\uFF0C\u65BC1991\u5E74\u554F\u4E16\u3002\u5F00\u5C14\u6587\u63A2\u9488\u529B\u663E\u5FAE\u93E1\u5229\u7528\u5FAE\u61F8\u81C2\u611F\u53D7\u548C\u653E\u5927\u61F8\u81C2\u4E0A\u5C16\u7D30\u63A2\u91DD\u8207\u53D7\u6E2C\u6A23\u54C1\u539F\u5B50\u4E4B\u9593\u7684\u4F5C\u7528\u529B\uFF0C\u5F9E\u800C\u9054\u5230\u6AA2\u6E2C\u7684\u76EE\u7684\uFF0C\u5177\u6709\u539F\u5B50\u7D1A\u7684\u5206\u8FA8\u7387\u3002"@zh . . . "\u30B1\u30EB\u30D3\u30F3\u30D7\u30ED\u30FC\u30D6\u30D5\u30A9\u30FC\u30B9\u9855\u5FAE\u93E1"@ja .