. "\u041C\u0430\u0441\u0441\u0438\u0432 \u041C\u043E\u043D\u0436\u0430"@ru . "4547"^^ . . . . "\u0412 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u0435 \u043C\u0430\u0441\u0441\u0438\u0432\u044B \u041C\u043E\u043D\u0436\u0430 \u0438\u043B\u0438 \u043C\u0430\u0442\u0440\u0438\u0446\u044B \u041C\u043E\u043D\u0436\u0430 \u2014 \u044D\u0442\u043E \u043E\u0431\u044A\u0435\u043A\u0442\u044B, \u043D\u0430\u0437\u0432\u0430\u043D\u043D\u044B\u0435 \u043F\u043E \u0438\u043C\u0435\u043D\u0438 \u043E\u0442\u043A\u0440\u044B\u0432\u0430\u0442\u0435\u043B\u044F, \u0444\u0440\u0430\u043D\u0446\u0443\u0437\u0441\u043A\u043E\u0433\u043E \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u0430 \u0413\u0430\u0441\u043F\u0430\u0440\u0430 \u041C\u043E\u043D\u0436\u0430."@ru . . "Monge array"@en . . . . "In mathematics applied to computer science, Monge arrays, or Monge matrices, are mathematical objects named for their discoverer, the French mathematician Gaspard Monge. An m-by-n matrix is said to be a Monge array if, for all such that one obtains So for any two rows and two columns of a Monge array (a 2 \u00D7 2 sub-matrix) the four elements at the intersection points have the property that the sum of the upper-left and lower right elements (across the main diagonal) is less than or equal to the sum of the lower-left and upper-right elements (across the antidiagonal). This matrix is a Monge array:"@en . . . . . "229649"^^ . . . . "920913679"^^ . . . . "\u0412 \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u0435 \u043C\u0430\u0441\u0441\u0438\u0432\u044B \u041C\u043E\u043D\u0436\u0430 \u0438\u043B\u0438 \u043C\u0430\u0442\u0440\u0438\u0446\u044B \u041C\u043E\u043D\u0436\u0430 \u2014 \u044D\u0442\u043E \u043E\u0431\u044A\u0435\u043A\u0442\u044B, \u043D\u0430\u0437\u0432\u0430\u043D\u043D\u044B\u0435 \u043F\u043E \u0438\u043C\u0435\u043D\u0438 \u043E\u0442\u043A\u0440\u044B\u0432\u0430\u0442\u0435\u043B\u044F, \u0444\u0440\u0430\u043D\u0446\u0443\u0437\u0441\u043A\u043E\u0433\u043E \u043C\u0430\u0442\u0435\u043C\u0430\u0442\u0438\u043A\u0430 \u0413\u0430\u0441\u043F\u0430\u0440\u0430 \u041C\u043E\u043D\u0436\u0430."@ru . . . "In mathematics applied to computer science, Monge arrays, or Monge matrices, are mathematical objects named for their discoverer, the French mathematician Gaspard Monge. An m-by-n matrix is said to be a Monge array if, for all such that one obtains So for any two rows and two columns of a Monge array (a 2 \u00D7 2 sub-matrix) the four elements at the intersection points have the property that the sum of the upper-left and lower right elements (across the main diagonal) is less than or equal to the sum of the lower-left and upper-right elements (across the antidiagonal). This matrix is a Monge array: For example, take the intersection of rows 2 and 4 with columns 1 and 5.The four elements are: 17 + 7 = 2423 + 11 = 34 The sum of the upper-left and lower right elements is less than or equal to the sum of the lower-left and upper-right elements."@en . . . . . . .