. . . . . . . . "Nanocomposite"@fr . . "Nanocomposite"@en . . . . . "28684"^^ . "Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material. The idea behind Nanocomposite is to use building blocks with dimensions in nanometre range to design and create new materials with unprecedented flexibility and improvement in their physical properties."@en . . . . "\u7EB3\u7C73\u590D\u5408\u7269\u662F\u4E00\u79CD\u591A\u76F8\u56FA\u6001\u6750\u6599\uFF0C\u5176\u4E2D\u4E00\u4E2A\u76F8\u6001\u81F3\u5C11\u6709\u4E00\u8FB9\u7684\u5C3A\u5BF8\u5C0F\u4E8E100\u7EB3\u7C73. \u7EB3\u7C73\u590D\u5408\u7269\u901A\u5E38\u662F\u7531\u56E0\u7ED3\u6784\u548C\u5316\u5B66\u6027\u8D28\u4E0D\u540C\u800C\u5177\u6709\u4E0D\u540C\u6027\u8D28\u7684\u4E00\u4E2A\u57FA\u8D28\u4E0E\u4E00\u4E2A\u7EB3\u7C73\u7EA7\u589E\u5F3A\u76F8\u7EC4\u5408\u800C\u6210\u3002 \u7EB3\u7C73\u590D\u5408\u7269\u7684\u529B\u5B66\u6027\u8D28\u4E0E\u4F20\u7EDF\u7684\u590D\u5408\u6750\u6599\u4E0D\u540C\uFF0C\u56E0\u4E3A\u7EB3\u7C73\u590D\u5408\u7269\u7684\u589E\u5F3A\u76F8\u5177\u6709\u5F88\u9AD8\u7684\u9762\u79EF/\u4F53\u79EF\u6BD4\u4E0E\u957F\u5BBD\u6BD4\u3002\u589E\u5F3A\u76F8\u4E00\u822C\u662F\u4EE5\u9897\u7C92\u72B6\uFF08\u77FF\u7269\uFF09\uFF0C\u5C42\u72B6\uFF08\u7C98\u571F\uFF09\u6216\u8005\u7EA4\u7EF4\u72B6\uFF08\u78B3\u7EB3\u7C73\u7BA1\uFF09\u5F62\u6001\u5B58\u5728\u7684\u3002\u57FA\u8D28\u4E0E\u589E\u5F3A\u76F8\u7684\u754C\u9762\u9762\u79EF\u975E\u5E38\u5927\uFF0C\u901A\u5E38\u6BD4\u4F20\u7EDF\u590D\u5408\u6750\u6599\u5927\u4E00\u4E2A\u6570\u91CF\u7EA7\u3002\u5927\u7684\u754C\u9762\u9762\u79EF\u610F\u5473\u7740\u5F88\u5C11\u91CF\u7684\u589E\u5F3A\u76F8\u53EF\u4EE5\u5BF9\u590D\u5408\u7269\u6574\u4F53\u7684\u5B8F\u89C2\u6027\u8D28\u4EA7\u751F\u5F71\u54CD\u3002\u4F8B\u5982\uFF0C\u590D\u5408\u6750\u6599\u4E2D\u52A0\u5165\u7684\u78B3\u7EB3\u7C73\u7BA1\u53EF\u4EE5\u589E\u5F3A\u7535\u5BFC\u7387\u548C\u70ED\u5BFC\u7387\u3002\u52A0\u5165\u5176\u4ED6\u7EB3\u7C73\u9897\u7C92\u5219\u53EF\u80FD\u6539\u5584\u6750\u6599\u7684\u5149\u5B66\u6027\u8D28\uFF0C\u4ECB\u7535\u6027\u8D28\uFF0C\u8010\u706B\u6027\u6216\u8005\u529B\u5B66\u6027\u8D28\u3002 \u901A\u5E38\u6765\u8BF4\uFF0C\u7EB3\u7C73\u7EA7\u589E\u5F3A\u76F8\u662F\u5728\u590D\u5408\u7269\u7684\u6DF7\u5408\u5236\u9020\u8FC7\u7A0B\u4E2D\u88AB\u52A0\u5165\u5E76\u6269\u6563\u5230\u57FA\u8D28\u4E2D\u7684\u3002\u52A0\u5165\u7684\u7EB3\u7C73\u9897\u7C92\u7684\u8D28\u91CF\u6BD4\u4E00\u822C\u5F88\u4F4E\uFF08\u4ECB\u4E8E0.5\u52305%\uFF09\uFF0C\u56E0\u4E3A\u4ED6\u4EEC\u7684\u5F88\u5C0F\u3002\u8FD9\u79CD\u60C5\u51B5\u7ECF\u5E38\u53D1\u751F\u5728\u957F\u5BBD\u6BD4\u5F88\u5927\u7684\u975E\u7403\u72B6\u7EB3\u7C73\u9897\u7C92\u4E0A\uFF08\u4F8B\u5982\u5C42\u72B6\u7684\u7C98\u571F\uFF0C\u6216\u8005\u7EA4\u7EF4\u72B6\u7684\u78B3\u7EB3\u7C73\u7BA1\uFF09\u3002 \u7EB3\u7C73\u590D\u5408\u7269\u53EF\u4EE5\u6839\u636E\u57FA\u8D28\u7684\u6210\u5206\u5206\u4E3A\u51E0\u79CD\u7C7B\u578B\u3002 \n* \u9AD8\u5206\u5B50\u57FA\u8D28\u7684\u7EB3\u7C73\u590D\u5408\u7269 \n* \u9676\u74F7\u57FA\u8D28\u7684\u7EB3\u7C73\u590D\u5408\u7269 \n* \u91D1\u5C5E\u57FA\u8D28\u7684\u7EB3\u7C73\u590D\u5408\u7269"@zh . . . "5667589"^^ . "Nanocomposito"@it . . . "\u30CA\u30CE\u30B3\u30F3\u30DD\u30B8\u30C3\u30C8 (\u82F1: nanocomposites) \u3068\u306F\u3001\u3042\u308B\u7D20\u6750\u30921\u2013100nm\u306E\u5927\u304D\u3055\u306B\u7C92\u5B50\u5316\u3057\u305F\u3082\u306E\u3092\u3001\u5225\u306E\u7D20\u6750\u306B\u7DF4\u308A\u3053\u3093\u3067\u62E1\u6563\u3055\u305B\u305F\u8907\u5408\u6750\u6599\u306E\u7DCF\u79F0\u3067\u3042\u308B\u3002\u30CA\u30CE\u30B3\u30F3\u30DD\u30B8\u30C3\u30C8\u306E\u5F62\u6210\u306B\u3088\u308A\u3001\u5F15\u5F35\u5F37\u3055\u3001\u5F3E\u6027\u7387\u3001\u71B1\u5909\u5F62\u6E29\u5EA6\u7B49\u306E\u69D8\u3005\u306A\u7269\u6027\u304C\u98DB\u8E8D\u7684\u306B\u5411\u4E0A\u3059\u308B\u3002"@ja . . "Un nanocomposite est un mat\u00E9riau solide multiphas\u00E9 dont une des phases a au moins une dimension inf\u00E9rieure \u00E0 100 nanom\u00E8tres. Un nanocomposite est g\u00E9n\u00E9ralement la combinaison d\u2019une matrice massive avec une phase de renfort nanom\u00E9trique de propri\u00E9t\u00E9s diff\u00E9rentes r\u00E9sultantes des diff\u00E9rences structurales et chimiques."@fr . . . . . . "\u041D\u0430\u043D\u043E\u043A\u043E\u043C\u043F\u043E\u0437\u0438\u0442"@ru . . . . . . . . . "\u30CA\u30CE\u30B3\u30F3\u30DD\u30B8\u30C3\u30C8 (\u82F1: nanocomposites) \u3068\u306F\u3001\u3042\u308B\u7D20\u6750\u30921\u2013100nm\u306E\u5927\u304D\u3055\u306B\u7C92\u5B50\u5316\u3057\u305F\u3082\u306E\u3092\u3001\u5225\u306E\u7D20\u6750\u306B\u7DF4\u308A\u3053\u3093\u3067\u62E1\u6563\u3055\u305B\u305F\u8907\u5408\u6750\u6599\u306E\u7DCF\u79F0\u3067\u3042\u308B\u3002\u30CA\u30CE\u30B3\u30F3\u30DD\u30B8\u30C3\u30C8\u306E\u5F62\u6210\u306B\u3088\u308A\u3001\u5F15\u5F35\u5F37\u3055\u3001\u5F3E\u6027\u7387\u3001\u71B1\u5909\u5F62\u6E29\u5EA6\u7B49\u306E\u69D8\u3005\u306A\u7269\u6027\u304C\u98DB\u8E8D\u7684\u306B\u5411\u4E0A\u3059\u308B\u3002"@ja . . . . . . . "Un nanocomposito \u00E8 un materiale solido multifase dove una delle fasi ha una, due o tre dimensioni minori di 100 nanometri (nm), o strutture aventi distanze che ripetono la nano-scala nelle diverse fasi che costituiscono il materiale. Nel senso pi\u00F9 ampio questa definizione pu\u00F2 includere mezzi porosi, colloidi, gel, copolimeri e miscele polimerici (miscele tra polimeri differenti), ma di solito si intende la combinazione solida di una matrice grossolana (parte di composito continua che d\u00E0 forma al materiale) e la fase (o fasi) nano-dimensionale (-i) che differiscono per le propriet\u00E0 a causa delle differenze nella struttura e nella chimica. Le propriet\u00E0 catalitiche, meccaniche, elettriche, termiche, ottiche, elettrochimiche, dei nanocompositi si distinguono nettamente da quelle dei materiali "@it . . . "\u7EB3\u7C73\u590D\u5408\u7269\u662F\u4E00\u79CD\u591A\u76F8\u56FA\u6001\u6750\u6599\uFF0C\u5176\u4E2D\u4E00\u4E2A\u76F8\u6001\u81F3\u5C11\u6709\u4E00\u8FB9\u7684\u5C3A\u5BF8\u5C0F\u4E8E100\u7EB3\u7C73. \u7EB3\u7C73\u590D\u5408\u7269\u901A\u5E38\u662F\u7531\u56E0\u7ED3\u6784\u548C\u5316\u5B66\u6027\u8D28\u4E0D\u540C\u800C\u5177\u6709\u4E0D\u540C\u6027\u8D28\u7684\u4E00\u4E2A\u57FA\u8D28\u4E0E\u4E00\u4E2A\u7EB3\u7C73\u7EA7\u589E\u5F3A\u76F8\u7EC4\u5408\u800C\u6210\u3002 \u7EB3\u7C73\u590D\u5408\u7269\u7684\u529B\u5B66\u6027\u8D28\u4E0E\u4F20\u7EDF\u7684\u590D\u5408\u6750\u6599\u4E0D\u540C\uFF0C\u56E0\u4E3A\u7EB3\u7C73\u590D\u5408\u7269\u7684\u589E\u5F3A\u76F8\u5177\u6709\u5F88\u9AD8\u7684\u9762\u79EF/\u4F53\u79EF\u6BD4\u4E0E\u957F\u5BBD\u6BD4\u3002\u589E\u5F3A\u76F8\u4E00\u822C\u662F\u4EE5\u9897\u7C92\u72B6\uFF08\u77FF\u7269\uFF09\uFF0C\u5C42\u72B6\uFF08\u7C98\u571F\uFF09\u6216\u8005\u7EA4\u7EF4\u72B6\uFF08\u78B3\u7EB3\u7C73\u7BA1\uFF09\u5F62\u6001\u5B58\u5728\u7684\u3002\u57FA\u8D28\u4E0E\u589E\u5F3A\u76F8\u7684\u754C\u9762\u9762\u79EF\u975E\u5E38\u5927\uFF0C\u901A\u5E38\u6BD4\u4F20\u7EDF\u590D\u5408\u6750\u6599\u5927\u4E00\u4E2A\u6570\u91CF\u7EA7\u3002\u5927\u7684\u754C\u9762\u9762\u79EF\u610F\u5473\u7740\u5F88\u5C11\u91CF\u7684\u589E\u5F3A\u76F8\u53EF\u4EE5\u5BF9\u590D\u5408\u7269\u6574\u4F53\u7684\u5B8F\u89C2\u6027\u8D28\u4EA7\u751F\u5F71\u54CD\u3002\u4F8B\u5982\uFF0C\u590D\u5408\u6750\u6599\u4E2D\u52A0\u5165\u7684\u78B3\u7EB3\u7C73\u7BA1\u53EF\u4EE5\u589E\u5F3A\u7535\u5BFC\u7387\u548C\u70ED\u5BFC\u7387\u3002\u52A0\u5165\u5176\u4ED6\u7EB3\u7C73\u9897\u7C92\u5219\u53EF\u80FD\u6539\u5584\u6750\u6599\u7684\u5149\u5B66\u6027\u8D28\uFF0C\u4ECB\u7535\u6027\u8D28\uFF0C\u8010\u706B\u6027\u6216\u8005\u529B\u5B66\u6027\u8D28\u3002 \u901A\u5E38\u6765\u8BF4\uFF0C\u7EB3\u7C73\u7EA7\u589E\u5F3A\u76F8\u662F\u5728\u590D\u5408\u7269\u7684\u6DF7\u5408\u5236\u9020\u8FC7\u7A0B\u4E2D\u88AB\u52A0\u5165\u5E76\u6269\u6563\u5230\u57FA\u8D28\u4E2D\u7684\u3002\u52A0\u5165\u7684\u7EB3\u7C73\u9897\u7C92\u7684\u8D28\u91CF\u6BD4\u4E00\u822C\u5F88\u4F4E\uFF08\u4ECB\u4E8E0.5\u52305%\uFF09\uFF0C\u56E0\u4E3A\u4ED6\u4EEC\u7684\u5F88\u5C0F\u3002\u8FD9\u79CD\u60C5\u51B5\u7ECF\u5E38\u53D1\u751F\u5728\u957F\u5BBD\u6BD4\u5F88\u5927\u7684\u975E\u7403\u72B6\u7EB3\u7C73\u9897\u7C92\u4E0A\uFF08\u4F8B\u5982\u5C42\u72B6\u7684\u7C98\u571F\uFF0C\u6216\u8005\u7EA4\u7EF4\u72B6\u7684\u78B3\u7EB3\u7C73\u7BA1\uFF09\u3002 \u7EB3\u7C73\u590D\u5408\u7269\u53EF\u4EE5\u6839\u636E\u57FA\u8D28\u7684\u6210\u5206\u5206\u4E3A\u51E0\u79CD\u7C7B\u578B\u3002 \n* \u9AD8\u5206\u5B50\u57FA\u8D28\u7684\u7EB3\u7C73\u590D\u5408\u7269 \n* \u9676\u74F7\u57FA\u8D28\u7684\u7EB3\u7C73\u590D\u5408\u7269 \n* \u91D1\u5C5E\u57FA\u8D28\u7684\u7EB3\u7C73\u590D\u5408\u7269"@zh . . "Un nanomaterial compuesto o nanocompuesto (en ingl\u00E9s, nanocomposite) es un material compuesto o multif\u00E1sico donde una de las fases tiene una, dos o tres dimensiones de menos de 100 nan\u00F3metros (nm).\u200B En el m\u00E1s amplio sentido de esta definici\u00F3n, se pueden incluir medios porosos, coloides, geles y copol\u00EDmeros; pero es m\u00E1s com\u00FAn la combinaci\u00F3n de un s\u00F3lido a granel que act\u00FAa como matriz y una fase (o m\u00E1s) nano-dimensional (un nanocompuesto) dispersada en la matriz. Las propiedades mec\u00E1nicas, el\u00E9ctricas, t\u00E9rmicas, \u00F3pticas, electroqu\u00EDmicas, catal\u00EDticas... del nanomaterial compuesto se diferencian notablemente de la de los materiales componentes por separado.\u200B Los nanomateriales compuestos difieren de los materiales compuestos convencionales debido a la excepcionalmente alta relaci\u00F3n entre la superficie y el volumen de la fase dispersada en la matriz. El \u00E1rea de la interfase entre la fase de la matriz y el refuerzo es t\u00EDpicamente un orden de magnitud mayor que para los materiales compuestos convencionales. Esto hace que una cantidad relativamente peque\u00F1a de refuerzo a escala nanom\u00E9trica pueda tener un efecto observable a escala macrosc\u00F3pica en las propiedades del compuesto. Se suelen clasificar los nanomateriales compuestos en funci\u00F3n del tipo de matriz que se emplea: nanocomposites de matriz cer\u00E1mica, nanocomposites de matriz met\u00E1lica y nanocomposites de matriz polim\u00E9rica."@es . . . . . "1120056343"^^ . . . . . . "\u041D\u0430\u043D\u043E\u043A\u043E\u043C\u043F\u043E\u0437\u0438\u0442 (\u043F\u043E\u043B\u0438\u043C\u0435\u0440\u043D\u044B\u0439 \u043D\u0430\u043D\u043E\u043A\u043E\u043C\u043F\u043E\u0437\u0438\u0442) \u2014 \u043C\u043D\u043E\u0433\u043E\u043A\u043E\u043C\u043F\u043E\u043D\u0435\u043D\u0442\u043D\u044B\u0439 \u043C\u0430\u0442\u0435\u0440\u0438\u0430\u043B, \u0441\u043E\u0441\u0442\u043E\u044F\u0449\u0438\u0439 \u0438\u0437 \u043F\u043B\u0430\u0441\u0442\u0438\u0447\u043D\u043E\u0439 \u043F\u043E\u043B\u0438\u043C\u0435\u0440\u043D\u043E\u0439 \u043E\u0441\u043D\u043E\u0432\u044B (\u043C\u0430\u0442\u0440\u0438\u0446\u044B) \u0438 \u043D\u0430\u043F\u043E\u043B\u043D\u0438\u0442\u0435\u043B\u044F \u2014 \u043E\u0440\u0433\u0430\u043D\u043E\u043C\u043E\u0434\u0438\u0444\u0438\u0446\u0438\u0440\u043E\u0432\u0430\u043D\u043D\u043E\u0439 \u043D\u0430\u043D\u043E\u0433\u043B\u0438\u043D\u044B, \u043E\u0431\u043B\u0430\u0434\u0430\u044E\u0449\u0438\u0439 \u043D\u043E\u0432\u044B\u043C\u0438 \u0443\u043B\u0443\u0447\u0448\u0435\u043D\u043D\u044B\u043C\u0438 \u0441\u0432\u043E\u0439\u0441\u0442\u0432\u0430\u043C\u0438."@ru . . "Un nanomaterial compuesto o nanocompuesto (en ingl\u00E9s, nanocomposite) es un material compuesto o multif\u00E1sico donde una de las fases tiene una, dos o tres dimensiones de menos de 100 nan\u00F3metros (nm).\u200B En el m\u00E1s amplio sentido de esta definici\u00F3n, se pueden incluir medios porosos, coloides, geles y copol\u00EDmeros; pero es m\u00E1s com\u00FAn la combinaci\u00F3n de un s\u00F3lido a granel que act\u00FAa como matriz y una fase (o m\u00E1s) nano-dimensional (un nanocompuesto) dispersada en la matriz. Las propiedades mec\u00E1nicas, el\u00E9ctricas, t\u00E9rmicas, \u00F3pticas, electroqu\u00EDmicas, catal\u00EDticas... del nanomaterial compuesto se diferencian notablemente de la de los materiales componentes por separado.\u200B"@es . . "Un nanocomposite est un mat\u00E9riau solide multiphas\u00E9 dont une des phases a au moins une dimension inf\u00E9rieure \u00E0 100 nanom\u00E8tres. Un nanocomposite est g\u00E9n\u00E9ralement la combinaison d\u2019une matrice massive avec une phase de renfort nanom\u00E9trique de propri\u00E9t\u00E9s diff\u00E9rentes r\u00E9sultantes des diff\u00E9rences structurales et chimiques."@fr . . "Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material. The idea behind Nanocomposite is to use building blocks with dimensions in nanometre range to design and create new materials with unprecedented flexibility and improvement in their physical properties. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials. Size limits for these effects have been proposed: 1. \n* <5 nm for catalytic activity 2. \n* <20 nm for making a hard magnetic material soft 3. \n* <50 nm for refractive index changes 4. \n* <100 nm for achieving superparamagnetism, mechanical strengthening or restricting matrix dislocation movement Nanocomposites are found in nature, for example in the structure of the abalone shell and bone. The use of nanoparticle-rich materials long predates the understanding of the physical and chemical nature of these materials. Jose-Yacaman et al. investigated the origin of the depth of colour and the resistance to acids and bio-corrosion of Maya blue paint, attributing it to a nanoparticle mechanism. From the mid-1950s nanoscale organo-clays have been used to control flow of polymer solutions (e.g. as paint viscosifiers) or the constitution of gels (e.g. as a thickening substance in cosmetics, keeping the preparations in homogeneous form). By the 1970s polymer/clay composites were the topic of textbooks, although the term \"nanocomposites\" was not in common use. In mechanical terms, nanocomposites differ from conventional composite materials due to the exceptionally high surface to volume ratio of the reinforcing phase and/or its exceptionally high aspect ratio. The reinforcing material can be made up of particles (e.g. minerals), sheets (e.g. exfoliated clay stacks) or fibres (e.g. carbon nanotubes or electrospun fibres). The area of the interface between the matrix and reinforcement phase(s) is typically an order of magnitude greater than for conventional composite materials. The matrix material properties are significantly affected in the vicinity of the reinforcement. Ajayan et al. note that with polymer nanocomposites, properties related to local chemistry, degree of thermoset cure, polymer chain mobility, polymer chain conformation, degree of polymer chain ordering or crystallinity can all vary significantly and continuously from the interface with the reinforcement into the bulk of the matrix. This large amount of reinforcement surface area means that a relatively small amount of nanoscale reinforcement can have an observable effect on the macroscale properties of the composite. For example, adding carbon nanotubes improves the electrical and thermal conductivity. Other kinds of nanoparticulates may result in enhanced optical properties, dielectric properties, heat resistance or mechanical properties such as stiffness, strength and resistance to wear and damage. In general, the nano reinforcement is dispersed into the matrix during processing. The percentage by weight (called mass fraction) of the nanoparticulates introduced can remain very low (on the order of 0.5% to 5%) due to the low filler percolation threshold, especially for the most commonly used non-spherical, high aspect ratio fillers (e.g. nanometer-thin platelets, such as clays, or nanometer-diameter cylinders, such as carbon nanotubes). The orientation and arrangement of asymmetric nanoparticles, thermal property mismatch at the interface, interface density per unit volume of nanocomposite, and polydispersity of nanoparticles significantly affect the effective thermal conductivity of nanocomposites."@en . . "Nanocompuesto"@es . . . . "\u30CA\u30CE\u30B3\u30F3\u30DD\u30B8\u30C3\u30C8"@ja . . . . . . . . . . . . . "\u7EB3\u7C73\u590D\u5408\u7269"@zh . "\u041D\u0430\u043D\u043E\u043A\u043E\u043C\u043F\u043E\u0437\u0438\u0442 (\u043F\u043E\u043B\u0438\u043C\u0435\u0440\u043D\u044B\u0439 \u043D\u0430\u043D\u043E\u043A\u043E\u043C\u043F\u043E\u0437\u0438\u0442) \u2014 \u043C\u043D\u043E\u0433\u043E\u043A\u043E\u043C\u043F\u043E\u043D\u0435\u043D\u0442\u043D\u044B\u0439 \u043C\u0430\u0442\u0435\u0440\u0438\u0430\u043B, \u0441\u043E\u0441\u0442\u043E\u044F\u0449\u0438\u0439 \u0438\u0437 \u043F\u043B\u0430\u0441\u0442\u0438\u0447\u043D\u043E\u0439 \u043F\u043E\u043B\u0438\u043C\u0435\u0440\u043D\u043E\u0439 \u043E\u0441\u043D\u043E\u0432\u044B (\u043C\u0430\u0442\u0440\u0438\u0446\u044B) \u0438 \u043D\u0430\u043F\u043E\u043B\u043D\u0438\u0442\u0435\u043B\u044F \u2014 \u043E\u0440\u0433\u0430\u043D\u043E\u043C\u043E\u0434\u0438\u0444\u0438\u0446\u0438\u0440\u043E\u0432\u0430\u043D\u043D\u043E\u0439 \u043D\u0430\u043D\u043E\u0433\u043B\u0438\u043D\u044B, \u043E\u0431\u043B\u0430\u0434\u0430\u044E\u0449\u0438\u0439 \u043D\u043E\u0432\u044B\u043C\u0438 \u0443\u043B\u0443\u0447\u0448\u0435\u043D\u043D\u044B\u043C\u0438 \u0441\u0432\u043E\u0439\u0441\u0442\u0432\u0430\u043C\u0438."@ru . . . . . . . . . . . . . "Un nanocomposito \u00E8 un materiale solido multifase dove una delle fasi ha una, due o tre dimensioni minori di 100 nanometri (nm), o strutture aventi distanze che ripetono la nano-scala nelle diverse fasi che costituiscono il materiale. Nel senso pi\u00F9 ampio questa definizione pu\u00F2 includere mezzi porosi, colloidi, gel, copolimeri e miscele polimerici (miscele tra polimeri differenti), ma di solito si intende la combinazione solida di una matrice grossolana (parte di composito continua che d\u00E0 forma al materiale) e la fase (o fasi) nano-dimensionale (-i) che differiscono per le propriet\u00E0 a causa delle differenze nella struttura e nella chimica. Le propriet\u00E0 catalitiche, meccaniche, elettriche, termiche, ottiche, elettrochimiche, dei nanocompositi si distinguono nettamente da quelle dei materiali componenti. Individuando nell'aumentata area superficiale e negli effetti quantistici due dei principali fattori che causano la differenza di propriet\u00E0 tra i nano materiali dagli altri materiali convenzionali, si vede come i nanocompositi possano sia mostrare propriet\u00E0 dominate dalle interazioni interfacciali tra la fase rinforzante e la matrice, che esibire i quanto effetti dovute alle strutture nano dimensionali disperse all'interno. Questi effetti ottenuti nel materiale della matrice, vengono indicati solitamente con il termine di \u201Cnano effetto\u201D, che indica cambiamenti nelle propriet\u00E0 locali della matrice causati dall'estremamente alta area superficiale della carica e delle piccole distanze tra le nano particelle. L'ingegnerizzazione di propriet\u00E0 permessa dall'accoppiamento della matrice con il nanorinforzo \u00E8 il fattore chiave che rende questi materiali cos\u00EC importanti e interessanti; la possibilit\u00E0 di combinare le caratteristiche migliori dei singoli materiali tradizionali in uno solo e la capacit\u00E0 di donare nuovi comportamenti a materiali convenzionali \u00E8 un'idea \u201Cfuturistica\u201D che attrae fortemente l'industria ed \u00E8 trainante per sicure ricerche e sviluppi futuri. Infatti i nanocompositi presentando propriet\u00E0 uniche, non riconoscibili ad esempio nei materiali compositi convenzionali, sono un importante oggetto di ricerca negli ultimi vent'anni."@it .